Long-term forest landscape responses to fire exclusion in the Great Xing'an Mountains, China

2007 ◽  
Vol 16 (1) ◽  
pp. 34 ◽  
Author(s):  
Yu Chang ◽  
Hong S. He ◽  
Ian Bishop ◽  
Yuanman Hu ◽  
Rencang Bu ◽  
...  

Understanding of long-term forest landscape dynamics under fire exclusion, which have not been studied in north-eastern China, is increasingly needed for designing sound forest management and protection plans. In the present study, we examine whether long-term fire exclusion leads to catastrophic fires and whether the fire regimes altered by fire exclusion have changed the course of natural succession of dominant tree species. We designed two simulation scenarios – fire exclusion and no fire exclusion – and used LANDIS to study the long-term (300 years) fire regime dynamic and the succession of dominant tree species in terms of species abundance, age structure and spatial pattern. Our simulated results show that fire exclusion can lead to catastrophic fires with return intervals ranging from 50 to 120 years, increase the proportion of coniferous forests and decrease the proportion of deciduous forests, simplify tree species composition, and alter forest age structures and landscape patterns. Based on these simulated results, we suggest that prescribed burning or coarse woody debris reduction, uneven age management, and a comprehensive wildlife habitat suitability analysis should be incorporated in forest management plans in this region.

2009 ◽  
Vol 18 (6) ◽  
pp. 727 ◽  
Author(s):  
Davide Ascoli ◽  
Rachele Beghin ◽  
Riccardo Ceccato ◽  
Alessandra Gorlier ◽  
Giampiero Lombardi ◽  
...  

Calluna vulgaris-dominated heathlands are globally important habitats and extremely scarce outside of north-west Europe. Rotational fire, grazing and cutting by local farmers were dominant features of past heathland management throughout Europe but have been abandoned, altering the historical fire regime and habitat structure. We briefly review research on Calluna heathland conservation management and provide the background and methodology for a long-term research project that will be used to define prescribed fire regimes in combination with grazing and cutting, for management of Calluna heathlands in north-west Italy. We outline the ecological and research issues that drive the fire experiment, making explicit the experimental design and the hypotheses that will be tested. We demonstrate how Adaptive Management can be used to inform decisions about the nature of fire prescriptions where little formal knowledge exists. Experimental plots ranging from 600 to 2500 m2 are treated according to one of eight alternative treatments (various combinations of fire, grazing and cutting), each replicated four times. To date, all treatments have been applied for 4 years, from 2005 to 2008, and a continuation is planned. Detailed measurement of fire characteristics is made to help interpret ecological responses at a microplot scale. The results of the experiment will be fed back into the experimental design and used to inform heathland management practice in north-west Italy.


Fire ◽  
2019 ◽  
Vol 2 (3) ◽  
pp. 48
Author(s):  
Kira M. Hoffman ◽  
Sara B. Wickham ◽  
William S. McInnes ◽  
Brian M. Starzomski

Fire exclusion and suppression has altered the composition and structure of Garry oak and associated ecosystems in British Columbia. The absence of frequent low severity ground fires has been one of the main contributors to dense patches of non-native grasses, shrubs, and encroaching Douglas-fir trees in historical Garry oak dominated meadows. This case study uses remote sensing and dendrochronology to reconstruct the stand dynamics and long-term fire history of a Garry oak meadow situated within Helliwell Provincial Park located on Hornby Island, British Columbia. The Garry oak habitat in Helliwell Park has decreased by 50% since 1950 due to conifer encroachment. Lower densities and mortalities of Garry oak trees were associated with the presence of overstory Douglas-fir trees. To slow conifer encroachment into the remaining Garry oak meadows, we recommend that mechanical thinning of Douglas-fir be followed by a prescribed burning program. Reintroducing fire to Garry oak ecosystems can restore and maintain populations of plants, mammals, and insects that rely on these fire resilient habitats.


2020 ◽  
Author(s):  
Angelica Feurdean ◽  
Andrei Cosmin Diaconu ◽  
Gabriela Florescu ◽  
Mariusz Galka ◽  
Simon M. Hutchinson ◽  
...  

<p>Although wildfire events in Siberia have increased in frequency and intensity over recent decades, in the absence of long-term records, it is not clear how far this trend deviates from baseline conditions. Short-term datasets categorise the forest fire regime in Siberia as one of surface, litter fires alternating withdevastating crown fires, although there is significant variability within this region likely reflecting vegetation composition. However, a comprehensive understanding of how vegetation composition and properties determine fire regimes remains lacking. To address this question we used two peat records spanning the last 2500 yr and a 5000 yr, respectively of charcoal morphologies-derived fire regime, pollen-based vegetation dynamics and stable isotope and testate amoebae-based climate reconstructions from boreal forests in central western Siberia, combined with fire-related functional traits of key boreal tree species. Compared to the trend over the 5000 yr period (mean fire return interval=FRI of 400 yr), our reconstructed mean FRI of 145 yr for the last five centuries is notably the shortest in the record. Most fires in this area tend to be surface, litter fires, although over the last centuries surface fires show an increased trend towards crowning. Frequent fires between 5000 and 4000 cal yr BP and 1500 cal yr BP to the present were concurrent with the dominance of invader species (primarily Betula) and fire endurer (mainly herbs) with prevalence of resisters (Pinus sylvestris, Pinus sibirica). Longer fire return intervals (up to 500 yr) between 4000 and 1500 cal yr BP were associated with the dominance of fire resisters with a considerable proportion of fire avoiders (Abies sibirica and Picea obovata). The rising number of fire episodes and the intensification of fire events over the past 1500 years have likely promoted fire-adapted plant communities (invaders and endurers) that can rapidly reach maturity, contributing to the reduction of avoider and resister species. This trend demonstrates that fire avoider species particularly fail to regenerate if the intervals between fire episodes are too short and thatan increasing number of fire episodes can drive land cover towards more fire-adapted plant communities. Our long-term perspective shows that the current fire regime lies significantly outside baseline conditions, which may drive future change in forest composition towards an increased prevalence of invader species. This study also contributes to an understanding of disturbance regimes in Pinus-Betula forests and considers the potential of tree species to adapt to new fire regimes.</p><p> </p>


2021 ◽  
Vol 9 ◽  
Author(s):  
Wesley Brookes ◽  
Lori D. Daniels ◽  
Kelsey Copes-Gerbitz ◽  
Jennifer N. Baron ◽  
Allan L. Carroll

In the 2017 and 2018, 2.55 million hectares burned across British Columbia, Canada, including unanticipated large and high-severity fires in many dry forests. To transform forest and fire management to achieve resilience to future megafires requires improved understanding historical fire frequency, severity, and spatial patterns. Our dendroecological reconstructions of 35 plots in a 161-hectare study area in a dry Douglas-fir forest revealed historical fires that burned at a wide range of frequencies and severities at both the plot- and study-area scales. The 23 fires between 1619 and 1943 burned at intervals of 10–30 years, primarily at low- to moderate-severity that scarred trees but generated few cohorts. In contrast, current fire-free intervals of 70–180 years exceed historical maximum intervals. Of the six widespread fires from 1790 to 1905, the 1863 fire affected 86% of plots and was moderate in severity with patches of higher severity that generated cohorts at fine scales only. These results indicate the severity of fires varied at fine spatial scales, and offer little support for the common assertion that periodic, high-severity, stand-initiating events were a component of the mixed-severity fire regime in these forest types. Many studies consider fires in the late 1800s relatively severe because they generated new cohorts of trees, and thus, emphasize the importance of high-severity fires in a mixed-severity fire regime. In our study area, the most widespread and severe fire was not a stand-initiating fire. Rather, the post-1863 cohorts persisted due disruption of the fire regime in the twentieth century when land-use shifted from Indigenous fire stewardship and early European settler fires to fire exclusion and suppression. In absence of low- to moderate-severity fires, contemporary forests are dense with closed canopies that are vulnerable to high-severity fire. Future management should reduce forest densities and to restore stand- and landscape-level heterogeneity and increase forest resilience. The timing and size of repeat treatments such as thinning of subcanopy trees and prescribed burning, including Indigenous fire stewardship, can be guided by our refined understanding of the mixed-severity fire regime that was historically dominated by low- to moderate-severity fires in this dry forest ecosystem.


Author(s):  
Stefan Friedrich ◽  
Torben Hilmers ◽  
Claudia Chreptun ◽  
Elizabeth Gosling ◽  
Isabelle Jarisch ◽  
...  

AbstractForest management faces growing uncertainty concerning environmental conditions and demand for ecosystem services. To help forest managers consider uncertainty, we applied a robust and multi-criteria approach to select the optimal composition of a forest enterprise from 12 stand types. In our simulation, the forest enterprise strives for either financial return or a multi-criteria forest management considering financial return, carbon storage and forest ecosystem stability. To quantify the influence of climate change on these decision criteria, we used the concept of analogous climate zones. Our results provide recommendations for long-term strategies for tree species selection in a Southeast German forest enterprise. The results show that considering both uncertainty and multifunctionality in forest management led to more diversified forest compositions. However, robust and multi-criteria optimisation required the forest enterprise to pay a premium in terms of lower income. Financial returns decreased when forest composition accounted for uncertainty or multiple objectives. We also found that adaptation measures could only partly financially compensate the effects of climate change. As the study is limited to two tree species, including additional tree species, variants of mixing proportions and further silvicultural strategies in the optimisation appears a promising avenue for future research.


2013 ◽  
Vol 43 (2) ◽  
pp. 188-199 ◽  
Author(s):  
Pierre-Luc Couillard ◽  
Serge Payette ◽  
Pierre Grondin

Extensive balsam fir (Abies balsamea (L.) Mill.) stands across the southern boreal forest are ecosystems likely more influenced by insect outbreaks and windthrows than by fire. To what degree the dominance of balsam fir stands reflects past and present disturbance dynamics associated with fire is not well documented. To answer this question, we focused on the reconstruction of the long-term fire history of high-altitude balsam fir forests of southern Quebec. The reconstruction was based on botanically identified and radiocarbon-dated soil charcoal particles in 19 sites covering successional stages from white birch (Betula payrifera Marsh.) to mixed white birch – balsam fir stands. Fire activity commenced early after deglaciation, about 9600 calibrated years before present when the first boreal tree species were established. Fire occurred recurrently during the following 5000 years with a forest landscape composed of the principal tree species common to the boreal forest, including jack pine (Pinus banksiana Lamb.). Fire activity ceased more or less abruptly about 4500 years ago due to less fire-conducive, more humid conditions. Then, the forest landscape progressively changed towards a larger representation of white birch – balsam fir forests and the disappearance of jack pine. Whereas several balsam fir stands have not burned over the last 4500 years, scattered fires occurred in particular over the last 250 years when 1815 and 1878 fires, probably man-made, burned 50% of the forest, thus causing a major change in the composition of the forest landscape. It is concluded that the high-altitude forest landscape of southern Quebec changed profoundly over the Holocene in close association with a time-transgressive dry-to-wet climatic gradient.


Forests ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 86 ◽  
Author(s):  
Jeannette Eggers ◽  
Minna Räty ◽  
Karin Öhman ◽  
Tord Snäll

Research Highlights: We show the difference in the long-term effects on economic and ecological forest values between four forest management scenarios of a large representative forest landscape. The scenarios were largely formulated by stakeholders representing the main views on how to manage north-European forests. Background and Objectives: Views on how to balance forest management between wood production and biodiversity differ widely between different stakeholder groups. We aim to show the long-term consequences of stakeholder-defined management scenarios, in terms of ecological and economic forest values. Materials and Methods: We simulated management scenarios for a forest landscape in Sweden, based on the management objectives and strategies of key stakeholders. We specifically investigated the difference in economic forest values coupled to wood supply and ecological indicators coupled to structural biodiversity between the scenarios over a 100-year period. The indicators were net present value, harvest, growing stock and increment, along with deadwood volume, the density of large trees, area of old forests and mature broadleaf-rich forests. Results: We show that the scenarios have widely different outcomes in terms of the studied indicators, and that differences in indicator outcome were largely due to different distributions in management regimes, i.e., the proportion of forest left unmanaged or under even-aged management or continuous cover forest, as well as specific retention practices. Retention and continuous cover forestry mitigate the negative effects that clear-cut forestry has upon biodiversity. Conclusions: We found that an increase in the forest area under the continuous cover forestry regime could be a cost-efficient way to increase structural diversity in managed boreal forests. On the other hand, no single management regime performed best with respect to all indicators, which means that a mixture of several management regimes is needed to balance conflicting objectives. We also show that the trade-off between economic and ecological indicators was not directly proportional, meaning that an increase in structural biodiversity may be obtained at a proportionally low cost with appropriate management planning.


2021 ◽  
Vol 4 ◽  
Author(s):  
John L. Willis ◽  
Ajay Sharma ◽  
John S. Kush

Emulating natural disturbance has become an increasingly important restoration strategy. In the fire-maintained woodlands of the southeastern United States, contemporary restoration efforts have focused on approximating the historical fire regime by burning at short intervals. Due to concerns over escape and damage to mature trees, most prescribed burning has occurred in the dormant season, which is inconsistent with the historical prevalence of lightning-initiated fire in the region. This discordance between contemporary prescribed burning and what is thought to be the historical fire regime has led some to question whether dormant season burning should remain the most common management practice; however, little is known about the long-term effects of repeated growing season burning on the health and productivity of desirable tree species. To address this question, we report on a long-term experiment comparing the effects of seasonal biennial burning (winter, spring, and summer) and no burning on the final survival status, height, diameter, and volume growth of 892 mature longleaf pine (Pinus palustris) over 23 years in three mature even-aged stands in southern Alabama, United States. Overall, longleaf pine survival across all treatments averaged 81 ± 2% [s.e]. Among seasonal burn treatments, survival was highest in the spring burns (82 ± 4%) but did not vary significantly from any other treatment (summer – 79 ± 4%, winter – 81 ± 4%, unburned – 84 ± 4%). However, survival was statistically influenced by initial diameter at breast height, as survival of trees in the largest size class (30 cm) was 40% higher than trees in the smallest size class (5 cm). Productivity of longleaf pine was not significantly different among treatment averages in terms of volume (38.9–44.1 ± 6.0 m3 ha–1), diameter (6.0–6.7 ± 0.3 cm), and height (2.5–3.4 ± 0.4 m) growth. Collectively, our results demonstrate that burning outside the dormant season will have little impact on mature longleaf pine survival and growth. This finding has important implications for the maintenance of restored southeastern woodlands, as interest in burning outside the dormant season continues to grow.


1990 ◽  
Vol 66 (4) ◽  
pp. 355-360 ◽  
Author(s):  
Robert A. Campbell

In 1988, 217, 825 ha were treated with herbicide for forest management purposes in Canada. Ontario treated the largest absolute number of hectares but New Brunswick had the highest intensity of treatment in terms of percentage of productive forest, cutover or planted area treated. Seventy-six percent of the herbicide was applied aerially. Eighty-five percent was for release. Forest managers across Canada have identified a number of gaps in herbicide technology including the need for: alternatives to herbicides, demonstration areas for the public, assessment methodology, long-term cost/benefit analysis, more information on effects on wildlife habitat, and aerial navigation aids.


2020 ◽  
Vol 12 (19) ◽  
pp. 3191 ◽  
Author(s):  
Yali Zhang ◽  
Wenjuan Shen ◽  
Mingshi Li ◽  
Yingying Lv

Long-term surface mining and subsequent vegetation recovery greatly alter land cover types, reshape landscape patterns and impose several impacts on local ecosystem services. However, studies on the history of forest changes in mining areas from the 1960s to the present have not been reported. This study developed a new idea to investigate the spatial and temporal dynamics of forest cover in a mining area of Mufu Mountain (Mt. Mufu) from 1967 to 2019 by integrating Landsat and Corona data, and to explore the relationships among the forest changes, landscape structures and ecosystem functions. Firstly, we applied the vegetation change tracker (VCT) algorithm and visual interpretation to create annual forest change datasets. Subsequently, the forest loss process was divided into subdivision, shrinkage, perforation and attrition components. An improved forest restoration model in this study extended the recovery process to bridge, branch, infilling and increment components. Finally, remote sensing variables and crown density were coupled to assess the forest aboveground biomass (AGB) to reflect the ecosystem function in the restoration area. Results showed that the combined use of Corona and the dense time series of Landsat can provide more detailed information on forest changes. Forest cover sharply decreased from 343.89 in 1967 to 298.44 ha in 1990, and after 2003, the forest area substantially increased and finally reached a maximum of 434.16 ha in 2019. Subdivision and bridge not only occupied the larger areas in the process of forest loss and restoration, but also they had strong correlations with forest changes and the Pearson correlation coefficients (r) were respectively 0.96 and 0.91. These all revealed that forest changes mainly affected landscape structure connectivity. The total forest AGB of Mt. Mufu increased from 20,173.35 in 2006 to 31,035.77 t in 2017, but the increases in AGB were only 30-40 t/ha in most recovery areas with high structure connectivity (bridge regions), indicating there is room for improving restoration projects in the future. The obtained findings can provide mining site restoration managers with clear, long-term forest change information and mine restoration assessment methods.


Sign in / Sign up

Export Citation Format

Share Document