Factors that affect the timing of the dispatch of initial attack resources to forest fires in northeastern Ontario, Canada

2019 ◽  
Vol 28 (1) ◽  
pp. 15 ◽  
Author(s):  
Ambika Paudel ◽  
David L. Martell ◽  
Douglas G. Woolford

The success of forest fire initial attack systems is believed to be affected by many factors including the initial attack response time. Despite the fact that fire managers typically strive to dispatch initial attack resources to most fires soon after they are reported in order to minimise their response time, they may not always be able to do so as the timing of the initial attack dispatch can be influenced by many factors. We examine the effects of the following factors on the initial attack dispatch process: the daily fire load (the number of fires reported each day), the time of day the fire was reported, fire weather conditions, fire cause and the month of the fire season, on the probability that initial attack resources are dispatched on the day that a fire is reported. Logistic regression methods are used to analyse a dataset composed of 4532 forest fires that were reported in our study area in a portion of northeastern region of Ontario, Canada, during 1963–2012 fire seasons. Our results indicate that the time of day a fire is reported, the total number of fires reported on that day and the Initial Spread Index are key factors that influence the timing of the initial attack response in our study area.

2015 ◽  
Vol 24 (7) ◽  
pp. 964 ◽  
Author(s):  
Amy A. Morin ◽  
Alisha Albert-Green ◽  
Douglas G. Woolford ◽  
David L. Martell

This paper presents the results from employing survival analysis methods to model the probability distribution of the control time of forest fires. The Kaplan–Meier estimator, log–location–scale models, accelerated failure time models, and Cox proportional hazards (PH) models are described. Historical lightning and people-caused forest fire data from the Province of Ontario, Canada from 1989 through 2004 are employed to illustrate the use of the Cox PH model. We demonstrate how this methodology can be used to examine the association between the control time of a suppressed forest fire and local factors such as weather, vegetation and fuel moisture, as well as fire management variables including the response time between when a fire is reported and the initiation of suppression action. Significant covariates common to both the lightning and people-caused models were the size of the fire at the onset of initial attack, the Fine Fuel Moisture Code and the Initial Spread Index. The response time was also a significant predictor for the control time of lightning-caused fires, whereas the Drought Code and time of day of initial attack were significant for people-caused fires. Larger values of the covariates in these models were associated with larger survival probabilities.


2009 ◽  
Vol 39 (12) ◽  
pp. 2369-2380 ◽  
Author(s):  
Héloïse Le Goff ◽  
Mike D. Flannigan ◽  
Yves Bergeron

The main objective of this paper is to evaluate whether future climate change would trigger an increase in the fire activity of the Waswanipi area, central Quebec. First, we used regression analyses to model the historical (1973–2002) link between weather conditions and fire activity. Then, we calculated Fire Weather Index system components using 1961–2100 daily weather variables from the Canadian Regional Climate Model for the A2 climate change scenario. We tested linear trends in 1961–2100 fire activity and calculated rates of change in fire activity between 1975–2005, 2030–2060, and 2070–2100. Our results suggest that the August fire risk would double (+110%) for 2100, while the May fire risk would slightly decrease (–20%), moving the fire season peak later in the season. Future climate change would trigger weather conditions more favourable to forest fires and a slight increase in regional fire activity (+7%). While considering this long-term increase, interannual variations of fire activity remain a major challenge for the development of sustainable forest management.


2011 ◽  
Vol 6 (3) ◽  
pp. 343-355 ◽  
Author(s):  
Murad Ahmed Farukh ◽  
◽  
Hiroshi Hayasaka ◽  
Keiji Kimura ◽  

Alaska lost 10% of its boreal forest area due to vigorous forest fires in 2004 and 2005. Repeated lightningcaused forest fires adversely impact residents and influence earth’s atmosphere in every fire season. The authors have reported on the weather conditions of Alaska’s most severe lightning occurrence in mid June 2005. This paper examines a range of weather indices like soar, instability, ‘dry lightning’ and other factors that could clearly explain lightning characteristics in Alaska. First, lightning occurrence days from May to September were classified into ‘non or small lightning’ days and ‘lightning’ days to determine threshold values. Second, ‘lightning’ days were categorized into ‘less severe,’ ‘severe,’ ‘very severe,’ and ‘extremely severe’ to notice controlling factors on the lightning severity. Based on this analysis, the lifted index (LIFT) was selected as sensitive to assess upper air instability, and Te850 (environmental temperature at 850 hPa) was selected as sensitive to assess warm and moist air masses. Finally, the possibilities of lightning forecasts in Alaska are discussed using lightning occurrence and LIFT and Te850 in 2005. As there is a time-lag between LIFT measurements (14:00) and the lightning peak (-17:00), and around one day time-lag between Te850 and lightning occurrence, lightning forecasts using LIFT and Te850 could provide a simply applicable forecast index for Alaska.


1998 ◽  
Vol 28 (10) ◽  
pp. 1448-1455 ◽  
Author(s):  
Kazi MS Islam ◽  
David L Martell

Each day, forest fire managers must deploy airtankers at initial attack bases to minimize initial attack response times. They must decide how many airtankers to deploy at each base and the initial attack range of each airtanker. We develop a daily airtanker simulation model and use it to investigate how airtanker system performance varies as a function of initial attack range, fire arrival rates, and time of day. Our results indicate that the optimal initial attack range decreases as the daily fire load increases. Fire managers can use this information to design airtanker dispatch policies that will minimize initial attack response times.


Author(s):  
V. Нolovan ◽  
V. Gerasimov ◽  
А. Нolovan ◽  
N. Maslich

Fighting in the Donbas, which has been going on for more than five years, shows that a skillful counter-battery fight is an important factor in achieving success in wars of this kind. Especially in conditions where for the known reasons the use of combat aviation is minimized. With the development of technical warfare, the task of servicing the counter-battery fight began to rely on radar stations (radar) to reconnaissance the positions of artillery, which in modern terms are called counter-battery radar. The principle of counter-battery radar is based on the detection of a target (artillery shell, mortar mine or rocket) in flight at an earlier stage and making several measurements of the coordinates of the current position of the ammunition. According to these data, the trajectory of the projectile's flight is calculated and, on the basis of its prolongation and extrapolation of measurements, the probable coordinates of the artillery, as well as the places of ammunition falling, are determined. In addition, the technical capabilities of radars of this class allow you to recognize the types and caliber of artillery systems, as well as to adjust the fire of your artillery. The main advantages of these radars are:  mobility (transportability);  inspection of large tracts of terrain over long distances;  the ability to obtain target's data in near real-time;  independence from time of day and weather conditions;  relatively high fighting efficiency. The purpose of the article is to determine the leading role and place of the counter-battery radar among other artillery instrumental reconnaissance tools, to compare the combat capabilities of modern counter-battery radars, armed with Ukrainian troops and some leading countries (USA, China, Russia), and are being developed and tested in Ukraine. The method of achieving this goal is a comparative analysis of the features of construction and combat capabilities of modern models of counter-battery radar in Ukraine and in other countries. As a result of the conducted analysis, the directions of further improvement of the radar armament, increasing the capabilities of existing and promising counter-battery radar samples were determined.


2021 ◽  
Vol 79 (3) ◽  
pp. 969-978
Author(s):  
Taya L. Farugia ◽  
Carla Cuni-Lopez ◽  
Anthony R. White

Australia often experiences natural disasters and extreme weather conditions such as: flooding, sandstorms, heatwaves, and bushfires (also known as wildfires or forest fires). The proportion of the Australian population aged 65 years and over is increasing, alongside the severity and frequency of extreme weather conditions and natural disasters. Extreme heat can affect the entire population but particularly at the extremes of life, and patients with morbidities. Frequently identified as a vulnerable demographic in natural disasters, there is limited research on older adults and their capacity to deal with extreme heat and bushfires. There is a considerable amount of literature that suggests a significant association between mental disorders such as dementia, and increased vulnerability to extreme heat. The prevalence rate for dementia is estimated at 30%by age 85 years, but there has been limited research on the effects extreme heat and bushfires have on individuals living with dementia. This review explores the differential diagnosis of dementia, the Australian climate, and the potential impact Australia’s extreme heat and bushfires have on individuals from vulnerable communities including low socioeconomic status Indigenous and Non-Indigenous populations living with dementia, in both metropolitan and rural communities. Furthermore, we investigate possible prevention strategies and provide suggestions for future research on the topic of Australian bushfires and heatwaves and their impact on people living with dementia. This paper includes recommendations to ensure rural communities have access to appropriate support services, medical treatment, awareness, and information surrounding dementia.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. Libonati ◽  
J. M. C. Pereira ◽  
C. C. Da Camara ◽  
L. F. Peres ◽  
D. Oom ◽  
...  

AbstractBiomass burning in the Brazilian Amazon is modulated by climate factors, such as droughts, and by human factors, such as deforestation, and land management activities. The increase in forest fires during drought years has led to the hypothesis that fire activity decoupled from deforestation during the twenty-first century. However, assessment of the hypothesis relied on an incorrect active fire dataset, which led to an underestimation of the decreasing trend in fire activity and to an inflated rank for year 2015 in terms of active fire counts. The recent correction of that database warrants a reassessment of the relationships between deforestation and fire. Contrasting with earlier findings, we show that the exacerbating effect of drought on fire season severity did not increase from 2003 to 2015 and that the record-breaking dry conditions of 2015 had the least impact on fire season of all twenty-first century severe droughts. Overall, our results for the same period used in the study that originated the fire-deforestation decoupling hypothesis (2003–2015) show that decoupling was clearly weaker than initially proposed. Extension of the study period up to 2019, and novel analysis of trends in fire types and fire intensity strengthened this conclusion. Therefore, the role of deforestation as a driver of fire activity in the region should not be underestimated and must be taken into account when implementing measures to protect the Amazon forest.


2021 ◽  
Vol 13 (12) ◽  
pp. 2386
Author(s):  
Aqil Tariq ◽  
Hong Shu ◽  
Qingting Li ◽  
Orhan Altan ◽  
Mobushir Riaz Khan ◽  
...  

Prescribed burning is a common strategy for minimizing forest fire risk. Fire is introduced under specific environmental conditions, with explicit duration, intensity, and rate of spread. Such conditions deviate from those encountered during the fire season. Prescribed burns mostly affect surface fuels and understory vegetation, an outcome markedly different when compared to wildfires. Data on prescribed burning are crucial for evaluating whether land management targets have been reached. This research developed a methodology to quantify the effects of prescribed burns using multi-temporal Sentinel-1 Synthetic Aperture Radar (SAR) imagery in the forests of southeastern Australia. C-band SAR datasets were specifically used to statistically explore changes in radar backscatter coefficients with the intensity of prescribed burns. Two modeling approaches based on pre- and post-fire ratios were applied for evaluating prescribed burn impacts. The effects of prescribed burns were documented with an overall accuracy of 82.3% using cross-polarized backscatter (VH) SAR data under dry conditions. The VV polarization indicated some potential to detect burned areas under wet conditions. The findings in this study indicate that the C-band SAR backscatter coefficient has the potential to evaluate the effectiveness of prescribed burns due to its sensitivity to changes in vegetation structure.


1994 ◽  
Vol 70 (4) ◽  
pp. 468-472
Author(s):  
M. Martin Dupuis

For millenia, fire and insects have played an important role in forested land evolution. Understanding the roles they play can be important in helping us not only to control them, but to use them as an ecological tool. Also, we notice some important interactions between these two agents. As insects affect fire, fire may control insect pests. Controlled burning may provide excellent results, but allows a very slight margin for possible errors. Fire use as an insect mangement tool, requires a very precise and wide knowledge of weather conditions, fire intensity, insect's life cycle, available fuels, and type of ecosystem involved.After a long run of experiences and research, we notice that fire has been and will always be an important factor in equilibrium of some ecosystems. Since wild fire prevention campaigns and the emergence of insecticides, some forests have become excessively vulnerable to insect pests. Proper knowledge, and use of fire control, rather than immediate suppression of forest fires, would allow us to conserve various ecosystems in a healthy balance.


2021 ◽  
Author(s):  
Martín Senande-Rivera ◽  
Gonzalo Miguez-Macho

<p>Extreme wildfire events associated with strong pyroconvection have gained the attention of the scientific community and the society in recent years. Strong convection in the fire plume can influence fire behaviour, as downdrafts can cause abrupt variations in surface wind direction and speed that can result in bursts of unexpected fire propagation. Climate change is expected to increase the length of the fire season and the extreme wildfire potential, so the risk of pyroconvection occurence might be also altered. Here, we analyse atmospheric stability and near-surface fire weather conditions in the Iberian Peninsula at the end of the 21st century to assess the projected changes in pyroconvective risk during favourable weather conditions for wildfire spread.  </p>


Sign in / Sign up

Export Citation Format

Share Document