Role of the sweating from the tail in the thermal balance of the rat-kangaroo Potorous tridactylus

1975 ◽  
Vol 23 (4) ◽  
pp. 453 ◽  
Author(s):  
JW Hudson ◽  
TJ Dawson

Among the marsupials the thermoregulatory response of sweating is uncommon and has only been described in the larger macropodids. Sweating in kangaroos is very unusual in that it only occurs in response to an exercise heat load. The thermoregulatory responses of a smaller, more generalized rat-kangaroo Potorous tridactylus were therefore examined to obtain a more general appreciation of sweating in macropodids. The pattern of heat balance at low and neutral temperatures was characteristic of that previously found for macropodids; body temperature was 35.9 � 0.52 (mean � se). Standard metabolism was only slightly higher than the predicted level for marsupials and minimal conductance was low, c. 1.3 W m-2 per degree Celsius. At moderate air temperatures heat was primarily lost by vasodilation and panting. The thermoregulatory responses at high air temperatures (near or above body temperature) also included copious sweating from the tail, but not from the body generally. Sweating rates of 600-650 g water per m2 per hour were obtained; these are about twice the generally reported rates for eutherians such as cows and horses.

Water exchange between insects and their environment via the vapour phase includes influx and efflux components. The pressure cycle theory postulates that insects (and some other arthropods) can regulate the relative rates of influx and efflux of water vapour by modulating hydrostatic pressures at a vapour-liquid interface by compressing or expanding a sealed, gas-filled cavity. Some such cavities, like the tracheal system, could be compressed by elevated pressure in all or part of the haemocoele. Others, perhaps including the muscular rectum of flea prepupae, could be compressed by intrinsic muscles. Maddrell Insect Physiol . 8, 199 (1971)) suggested a pressure cycle mechanism of this kind to account for rectal uptake of water vapour in Thermobia but did not find it compatible with quantitative information then available. Newer evidence conforms better with the proposed mechanism. Cyclical pressure changes are of widespread occurrence in insects and have sometimes been shown to depend on water status. Evidence is reviewed for the role of the tracheal system as an avenue for net exchange of water between the insect and its environment. Because water and respiratory gases share common pathways, most published findings fail to distinguish between the conventional view that the tracheal system has evolved as a site for distribution and exchange of respiratory gases and that any water exchange occurring in it is generally incidental and nonadaptive, and the theory proposed here. The pressure cycle theory offers a supplementary explanation not incompatible with evidence so far available. The relative importance of water economy and respiratory exchange in the functioning of compressible cavities such as the tracheal system remains to be explored. Some further implications of the pressure cycle theory are discussed. Consideration is given to the possible involvement of vapour-phase transport in the internal redistribution of water within the body. It is suggested that some insect wings may constitute internal vapour-liquid exchange sites, where water can move from the body fluids to the intratracheal gas. Ambient and body temperature must influence rates of vapour-liquid mass transfer. If elevated body temperature promotes evaporative discharge of the metabolic water burden that has been shown to accumulate during flight in some large insects, their minimum threshold thoracic temperature for sustained flight may relate to the maintenance of water balance. The role of water economy in the early evolution of insect wings is considered. Pressure cycles might help to maintain water balance in surface-breathing insects living in fresh and saline waters, but the turbulence of the surface of the open sea might prevent truly marine forms from using this mechanism.


1957 ◽  
Vol 8 (3) ◽  
pp. 271 ◽  
Author(s):  
CHB Priestley

An extension is made of Lee's (1950) original discussion of the heat balance of sheep exposed to a tropical sun. Methods are given for calculating the two quantities, convective heat loss and long-wave radiation exchange, which automatically compensate to a large extent for the added heat load. There appear to be advantages in distinguishing between the heat balance of the fleece and that of the body of the sheep, and this provides a method of estimating the heat conducted to the body as a consequence of the insolation.


2009 ◽  
Vol 296 (6) ◽  
pp. R1881-R1888 ◽  
Author(s):  
M. J. McKinley ◽  
F. Weissenborn ◽  
M. L. Mathai

Dehydrated mammals conserve body water by reducing thermoregulatory evaporative cooling responses e.g., panting and sweating. Increased core temperature (Tc) may result. Following rehydration and correction of fluid deficits, panting and sweating commence. We investigated the role of oropharyngeal/esophageal, postabsorptive and thermal signals in the panting response, and reduced Tc that occurs when unshorn sheep drink water following water deprivation for 2 days (ambient temperature 20°C). Ingestion of water (at body temperature) resulted in increased respiratory rate (panting) and reduced Tc within 4 min that persisted for at least 90 min. Initially, a similar panting response and reduced Tc occurred following rehydration by drinking isotonic saline solution, but panting was not sustained after 20 min, and Tc began to rise again. Rehydration by intraruminal administration of water, without any drinking, resulted in delayed panting and fall in Tc. Intraruminal infusion of saline was ineffective. Rehydration by drinking cool water (20°C) resulted in a rapid fall in Tc without increased panting. Shorn sheep had lower basal Tc that did not increase during 2 days of water deprivation, and they did not pant on rehydration by drinking water. Our results indicate that signals from the oropharyngeal and/or esophageal region associated with the act of drinking play a crucial role in the initial 20–30 min of the panting response to rehydration. Postabsorptive factors most likely reduced plasma tonicity and cause continued panting and further reduction in Tc. Tc also influences rehydration-induced panting. It occurs only if sheep incur a heat load during bodily dehydration.


2021 ◽  
Vol 7 ◽  
Author(s):  
Vishwajit S. Chowdhury ◽  
Guofeng Han ◽  
Hatem M. Eltahan ◽  
Shogo Haraguchi ◽  
Elizabeth R. Gilbert ◽  
...  

Increased average air temperatures and more frequent and prolonged periods of high ambient temperature (HT) associated with global warming will increasingly affect worldwide poultry production. It is thus important to understand how HT impacts poultry physiology and to identify novel approaches to facilitate improved adaptation and thereby maximize poultry growth, health and welfare. Amino acids play a role in many physiological functions, including stress responses, and their relative demand and metabolism are altered tissue-specifically during exposure to HT. For instance, HT decreases plasma citrulline (Cit) in chicks and leucine (Leu) in the embryonic brain and liver. The physiological significance of these changes in amino acids may involve protection of the body from heat stress. Thus, numerous studies have focused on evaluating the effects of dietary administration of amino acids. It was found that oral l-Cit lowered body temperature and increased thermotolerance in layer chicks. When l-Leu was injected into fertile broiler eggs to examine the cause of reduction of Leu in embryos exposed to HT, in ovo feeding of l-Leu improved thermotolerance in broiler chicks. In ovo injection of l-Leu was also found to inhibit weight loss in market-age broilers exposed to chronic HT, giving rise to the possibility of developing a novel biotechnology aimed at minimizing the economic losses to poultry producers during summer heat stress. These findings and the significance of amino acid metabolism in chicks and market-age broilers under HT are summarized and discussed in this review.


1996 ◽  
Vol 80 (6) ◽  
pp. 2234-2242 ◽  
Author(s):  
D. P. Bolton ◽  
E. A. Nelson ◽  
B. J. Taylor ◽  
I. L. Weatherall

A theoretical model of heat balance is presented that could clarify the matching of babies' wrapping with their environments. Best estimates of metabolic heat input and heat loss by all known routes are defined for 22 parts of the body surface. The variation of these with core temperature, posture, skin vasodilatation, and the onset of sweating are calculated: first, by using presumed skin temperatures and second, by following iterative calculation of the skin temperature and the consequent total heat losses. Calculation of the highest tolerable ambient temperature (HTAT) for a given set of clothes, underbedding, and covers shows that a well-wrapped baby lying face down could have an HTAT 10 degrees C lower than if he/she were lying supine. Representative values for highest and lowest tolerable temperatures (defined in text) are presented for the first 6 mo of life. Retrospective estimation of thermal balance from death-scene data on clothing and bedding can permit assessment of hyperthermia or hypothermia as a contributing cause of death. Recommendations are made on the avoidance of hyperthermia.


2009 ◽  
Vol 1286 ◽  
pp. 66-74 ◽  
Author(s):  
Carolina da Silveira Scarpellini ◽  
Luciane H. Gargaglioni ◽  
Luis G.S. Branco ◽  
Kênia C. Bícego

2021 ◽  
Vol 15 (3) ◽  
pp. 318-322
Author(s):  
Anca Constantin ◽  
Tamara Stanciu

The body temperature of a diver is one of the most important aspects of the concept of underwater safety and comfort. The heat balance equation previously established, was improved in this paper by introducing a linear dependence of the absolute humidity on the body temperature, as the absolute humidity influences the latent heat flux needed for the humidification of the breathing gas. The solution of the new proposed heat balance equation is a step forward in assessing the body temperature in both cases of unitary and saturation diving. The paper presents the equation and its solutions in the case of breathing either air or Heliox and compares the theoretical results with the values measured in the frame of simulated saturation diving with Heliox 5/95, in the hyperbaic laboratory. The proposed equation predicts the body temperature of the diver, at the end of a 30 minutes immersion with a good accuracy. The relative error is up to 1%.


Sign in / Sign up

Export Citation Format

Share Document