scholarly journals DNA methylation of BDNF as a biomarker of early-life adversity

2014 ◽  
Vol 112 (22) ◽  
pp. 6807-6813 ◽  
Author(s):  
Marija Kundakovic ◽  
Kathryn Gudsnuk ◽  
Julie B. Herbstman ◽  
Deliang Tang ◽  
Frederica P. Perera ◽  
...  

Early-life adversity increases the risk for psychopathology in later life. The underlying mechanism(s) is unknown, but epigenetic variation represents a plausible candidate. Early-life exposures can disrupt epigenetic programming in the brain, with lasting consequences for gene expression and behavior. This evidence is primarily derived from animal studies, with limited study in humans due to inaccessibility of the target brain tissue. In humans, although there is evidence for DNA methylation changes in the peripheral blood of psychiatric patients, a fundamental question remains as to whether epigenetic markers in the blood can predict epigenetic changes occurring in the brain. We used in utero bisphenol A (BPA) exposure as a model environmental exposure shown to disrupt neurodevelopment and exert long-term effects on behavior in animals and humans. We show that prenatal BPA induces lasting DNA methylation changes in the transcriptionally relevant region of the Bdnf gene in the hippocampus and blood of BALB/c mice and that these changes are consistent with BDNF changes in the cord blood of humans exposed to high maternal BPA levels in utero. Our data suggest that BDNF DNA methylation in the blood may be used as a predictor of brain BDNF DNA methylation and gene expression as well as behavioral vulnerability induced by early-life environmental exposure. Because BDNF expression and DNA methylation are altered in several psychiatric disorders that are associated with early-life adversity, including depression, schizophrenia, bipolar disorder, and autism, BDNF DNA methylation in the blood may represent a novel biomarker for the early detection of psychopathology.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Blanca Jimeno ◽  
Michaela Hau ◽  
Elena Gómez-Díaz ◽  
Simon Verhulst

Abstract Developmental conditions can impact the adult phenotype via epigenetic changes that modulate gene expression. In mammals, methylation of the glucocorticoid receptor gene Nr3c1 has been implicated as mediator of long-term effects of developmental conditions, but this evidence is limited to humans and rodents, and few studies have simultaneously tested for associations between DNA methylation, gene expression and phenotype. Adverse environmental conditions during early life (large natal brood size) or adulthood (high foraging costs) exert multiple long-term phenotypic effects in zebra finches, and we here test for effects of these manipulations on DNA methylation and expression of the Nr3c1 gene in blood. Having been reared in a large brood induced higher DNA methylation of the Nr3c1 regulatory region in adulthood, and this effect persisted over years. Nr3c1 expression was negatively correlated with methylation at 2 out of 8 CpG sites, and was lower in hard foraging conditions, despite foraging conditions having no effect on Nr3c1 methylation at our target region. Nr3c1 expression also correlated with glucocorticoid traits: higher expression level was associated with lower plasma baseline corticosterone concentrations and enhanced corticosterone reactivity. Our results suggest that methylation of the Nr3c1 regulatory region can contribute to the mechanisms underlying the emergence of long-term effects of developmental conditions in birds, but in our system current adversity dominated over early life experiences with respect to receptor expression.


2021 ◽  
Author(s):  
Natalia Duque-Wilckens ◽  
Erika Sarno ◽  
Robby E. Teis ◽  
Frauke Stoelting ◽  
Sonia Khalid ◽  
...  

ABSTRACTExposure to early life adversity (ELA) in the form of physical and/or psychological abuse or neglect increases the risk of developing psychiatric and inflammatory disorders later in life. It has been hypothesized that exposure to ELA results in persistent, low grade inflammation that leads to increased disease susceptibility by amplifying the crosstalk between stress-processing brain networks and the immune system, but the mechanisms remain largely unexplored. The meninges, a layer of three overlapping membranes that surround the central nervous system (CNS)- duramater, arachnoid, and piamater – possess unique features that allow them to play a key role in coordinating immune trafficking between the brain and the peripheral immune system. These include a network of lymphatic vessels that carry cerebrospinal fluid from the brain to the deep cervical lymph nodes, fenestrated blood vessels that allow the passage of molecules from blood to the CNS, and a rich population of resident mast cells, master regulators of the immune system. Using a mouse model of ELA consisting of neonatal maternal separation plus early weaning (NMSEW), we sought to explore the effects of ELA on duramater mast cell histology and expression of inflammatory markers in male and female C57Bl/6 mice. We found that mast cell number, activation level, and relative expression of pseudopodia differ across duramater regions, and that NMSEW exerts region-specific effects on mast cells in males and females. Using gene expression analyses, we next found that NMSEW increases the expression of inflammatory markers in the duramater of females but not males, and that this is prevented by pharmacological inhibition of mast cells with ketotifen. Together, our results show that ELA drives sex-specific, long-lasting effects on the duramater mast cell population and immune-related gene expression, suggesting that the long-lasting effects of ELA on disease susceptibility could be partly mediated by meningeal function.


2014 ◽  
Vol 73 (3) ◽  
pp. 413-421 ◽  
Author(s):  
Karen A. Lillycrop ◽  
Samuel P. Hoile ◽  
Leonie Grenfell ◽  
Graham C. Burdge

It is well established that genotype plays an important role in the ageing process. However, recent studies have suggested that epigenetic mechanisms may also influence the onset of ageing-associated diseases and longevity. Epigenetics is defined as processes that induce heritable changes in gene expression without a change in the DNA nucleotide sequence. The major epigenetic mechanisms are DNA methylation, histone modification and non-coding RNA. Such processes are involved in the regulation of tissue-specific gene expression, cell differentiation and genomic imprinting. However, epigenetic dysregulation is frequently seen with ageing. Relatively little is known about the factors that initiate such changes. However, there is emerging evidence that the early life environment, in particular nutrition, in early life can induce long-term changes in DNA methylation resulting in an altered susceptibility to a range of ageing-associated diseases. In this review, we will focus on the changes in DNA methylation that occur during ageing; their role in the ageing process and how early life nutrition can modulate DNA methylation and influence longevity. Understanding the mechanisms by which diet in early life can influence the epigenome will be crucial for the development of preventative and intervention strategies to increase well-being in later life.


2020 ◽  
Vol 14 ◽  
Author(s):  
Mette Soerensen ◽  
Dominika Marzena Hozakowska-Roszkowska ◽  
Marianne Nygaard ◽  
Martin J. Larsen ◽  
Veit Schwämmle ◽  
...  

2017 ◽  
Vol 8 (5) ◽  
pp. 513-519 ◽  
Author(s):  
T. Bianco-Miotto ◽  
J. M. Craig ◽  
Y. P. Gasser ◽  
S. J. van Dijk ◽  
S. E. Ozanne

Developmental origins of health and disease (DOHaD) is the study of how the early life environment can impact the risk of chronic diseases from childhood to adulthood and the mechanisms involved. Epigenetic modifications such as DNA methylation, histone modifications and non-coding RNAs are involved in mediating how early life environment impacts later health. This review is a summary of the Epigenetics and DOHaD workshop held at the 2016 DOHaD Society of Australia and New Zealand Conference. Our extensive knowledge of how the early life environment impacts later risk for chronic disease would not have been possible without animal models. In this review we highlight some animal model examples that demonstrate how an adverse early life exposure results in epigenetic and gene expression changes that may contribute to increased risk of chronic disease later in life. Type 2 diabetes and cardiovascular disease are chronic diseases with an increasing incidence due to the increased number of children and adults that are obese. Epigenetic changes such as DNA methylation have been shown to be associated with metabolic health measures and potentially predict future metabolic health status. Although more difficult to elucidate in humans, recent studies suggest that DNA methylation may be one of the epigenetic mechanisms that mediates the effects of early life exposures on later life risk of obesity and obesity related diseases. Finally, we discuss the role of the microbiome and how it is a new player in developmental programming and mediating early life exposures on later risk of chronic disease.


2019 ◽  
Vol 79 (1) ◽  
pp. 113-132 ◽  
Author(s):  
Marion Rincel ◽  
Muriel Darnaudéry

The developmental period constitutes a critical window of sensitivity to stress. Indeed, early-life adversity increases the risk to develop psychiatric diseases, but also gastrointestinal disorders such as the irritable bowel syndrome at adulthood. In the past decade, there has been huge interest in the gut–brain axis, especially as regards stress-related emotional behaviours. Animal models of early-life adversity, in particular, maternal separation (MS) in rodents, demonstrate lasting deleterious effects on both the gut and the brain. Here, we review the effects of MS on both systems with a focus on stress-related behaviours. In addition, we discuss more recent findings showing the impact of gut-directed interventions, including nutrition with pre- and probiotics, illustrating the role played by gut microbiota in mediating the long-term effects of MS. Overall, preclinical studies suggest that nutritional approaches with pro- and prebiotics may constitute safe and efficient strategies to attenuate the effects of early-life stress on the gut–brain axis. Further research is required to understand the complex mechanisms underlying gut–brain interaction dysfunctions after early-life stress as well as to determine the beneficial impact of gut-directed strategies in a context of early-life adversity in human subjects.


2013 ◽  
Vol 43 (1) ◽  
pp. 79
Author(s):  
R. Ghalamghash ◽  
H.Z. Mammedov ◽  
H. Ashayeri ◽  
A. Hosseini

Circulation ◽  
2014 ◽  
Vol 129 (suppl_1) ◽  
Author(s):  
Golareh Agha ◽  
Andres E Houseman ◽  
Karl T Kelsey ◽  
Charles B Eaton ◽  
Stephen L Buka ◽  
...  

RATIONALE: Adiposity is a major cardiovascular risk factor, suggesting an important role for adipose tissue in development of cardiovascular outcomes. There is evidence that early life adversity has a lasting impact on the development of adiposity, particularly in women. In utero exposure to famine was related to adulthood adiposity in women but not men, and associations between early life socioeconomic adversity and adulthood adiposity is established in women but less so in men. There is interest in epigenetic mechanisms by which early life adversity may program risk for adiposity, and utilizing directly affected tissue such as adipose tissue is ideal for investigating such mechanisms. Objective: To determine whether prenatally-assessed socioeconomic index (SEI) is associated with adulthood genome-wide DNA methylation in blood and adipose tissue, and whether associations differ between men and women. Methods: Participants (aged 44-50 y) were from the New England Family Study birth cohort, born in Providence, RI. Of 400 participants assessed during 2010-2011, a representative subsample of 106 participants (68 women, 38 men) was selected for DNA methylation analyses. SEI was measured prenatally as a composite numerical score, using a weighted percentile of both parents’ educational attainment, occupation, and income relative to the US population. DNA methylation in subcutaneous adipose tissue and peripheral blood leukocytes was evaluated using the Infinium HumanMethylation450K BeadChip. Results: Prenatal SEI was associated with adipose tissue DNA methylation in women (permutation-based omnibus p-values <0.001), but not men or the pooled sample. Associations in women were not attenuated after adjustment for race, current smoking, or mother’s smoking during pregnancy. Prenatal SEI was not related to blood DNA methylation. Conclusion: Results provide mechanistic insight on the association between early life adversity and adulthood adiposity, which is seen mainly in women.


Sign in / Sign up

Export Citation Format

Share Document