scholarly journals Sterol and genomic analyses validate the sponge biomarker hypothesis

2016 ◽  
Vol 113 (10) ◽  
pp. 2684-2689 ◽  
Author(s):  
David A. Gold ◽  
Jonathan Grabenstatter ◽  
Alex de Mendoza ◽  
Ana Riesgo ◽  
Iñaki Ruiz-Trillo ◽  
...  

Molecular fossils (or biomarkers) are key to unraveling the deep history of eukaryotes, especially in the absence of traditional fossils. In this regard, the sterane 24-isopropylcholestane has been proposed as a molecular fossil for sponges, and could represent the oldest evidence for animal life. The sterane is found in rocks ∼650–540 million y old, and its sterol precursor (24-isopropylcholesterol, or 24-ipc) is synthesized today by certain sea sponges. However, 24-ipc is also produced in trace amounts by distantly related pelagophyte algae, whereas only a few close relatives of sponges have been assayed for sterols. In this study, we analyzed the sterol and gene repertoires of four taxa (Salpingoeca rosetta,Capsaspora owczarzaki,Sphaeroforma arctica, andCreolimax fragrantissima), which collectively represent the major living animal outgroups. We discovered that all four taxa lack C30sterols, including 24-ipc. By building phylogenetic trees for key enzymes in 24-ipc biosynthesis, we identified a candidate gene (carbon-24/28 sterol methyltransferase, orSMT) responsible for 24-ipc production. Our results suggest that pelagophytes and sponges independently evolved C30sterol biosynthesis through clade-specificSMTduplications. Using a molecular clock approach, we demonstrate that the relevant spongeSMTduplication event overlapped with the appearance of 24-isopropylcholestanes in the Neoproterozoic, but that the algalSMTduplication event occurred later in the Phanerozoic. Subsequently, pelagophyte algae and their relatives are an unlikely alternative to sponges as a source of Neoproterozoic 24-isopropylcholestanes, consistent with growing evidence that sponges evolved long before the Cambrian explosion ∼542 million y ago.

PalZ ◽  
2021 ◽  
Author(s):  
Xingliang Zhang ◽  
Degan Shu

AbstractThe Cambrian Explosion by nature is a three-phased explosion of animal body plans alongside episodic biomineralization, pulsed change of generic diversity, body size variation, and progressive increase of ecosystem complexity. The Cambrian was a time of crown groups nested by numbers of stem groups with a high-rank taxonomy of Linnaean system (classes and above). Some stem groups temporarily succeeded while others were ephemeral and underrepresented by few taxa. The high number of stem groups in the early history of animals is a major reason for morphological gaps across phyla that we see today. Most phylum-level clades achieved their maximal disparity (or morphological breadth) during the time interval close to their first appearance in the fossil record during the early Cambrian, whereas others, principally arthropods and chordates, exhibit a progressive exploration of morphospace in subsequent Phanerozoic. The overall envelope of metazoan morphospace occupation was already broad in the early Cambrian though it did not reach maximal disparity nor has diminished significantly as a consequence of extinction since the Cambrian. Intrinsic and extrinsic causes were extensively discussed but they are merely prerequisites for the Cambrian Explosion. Without the molecular evolution, there could be no Cambrian Explosion. However, the developmental system is alone insufficient to explain Cambrian Explosion. Time-equivalent environmental changes were often considered as extrinsic causes, but the time coincidence is also insufficient to establish causality. Like any other evolutionary event, it is the ecology that make the Cambrian Explosion possible though ecological processes failed to cause a burst of new body plans in the subsequent evolutionary radiations. The Cambrian Explosion is a polythetic event in natural history and manifested in many aspects. No simple, single cause can explain the entire phenomenon.


2009 ◽  
Vol 83 (1) ◽  
pp. 30-44 ◽  
Author(s):  
Lin Dong ◽  
Shuhai Xiao ◽  
Bing Shen ◽  
Chuanming Zhou ◽  
Guoxiang Li ◽  
...  

The basal Cambrian marks the beginning of an important chapter in the history of life. However, most paleontological work on the basal Cambrian has been focused on skeletal animal fossils, and our knowledge about the primary producers—cyanobacteria and eukaryotic phytoplankton (e.g., acritarchs)—is limited. In this research, we have investigated basal Cambrian acritarchs, coccoidal microfossils, and cyanobacteria preserved in phosphorites and cherts of the Yanjiahe Formation in the Yangtze Gorges area (South China) and the Yurtus Formation in the Aksu area (Tarim Block, northwestern China). Our study confirms the occurrence in these two formations of small acanthomorphic acritarchs characteristic of the basal CambrianAsteridium–Comasphaeridium–Heliosphaeridium(ACH) assemblage. These acritarchs include abundantHeliosphaeridium ampliatimi(Wang, 1985) Yao et al., 2005, commonYurtusia uniformisn. gen. and n. sp., and rareComasphaeridium annulare(Wang, 1985) Yao et al., 2005. In addition, these basal Cambrian successions also contain the clustered coccoidal microfossilArchaeophycus yunnanensis(SonginLuo et al., 1982) n. comb., several filamentous cyanobacteria [Cyanonema majusn. sp.,Oscillatoriopsis longaTimofeev and Hermann, 1979, andSiphonophycus robustum(Schopf, 1968) Knoll et al., 1991], and the tabulate tubular microfossilMegathrix longusL. Yin, 1987a, n. emend. Some of these taxa (e.g.,H. ampliatum, C. annulare, andM. longus) have a wide geographic distribution but occur exclusively in basal Cambrian successions, supporting their biostratigraphic importance. Comparison between the stratigraphic occurrences of microfossils reported here and skeletal animal fossils published by others suggests that animals and phytoplankton radiated in tandem during the Cambrian explosion.


Author(s):  
Sergei Tarasov ◽  
Istvan Miko ◽  
Matthew Yoder ◽  
Josef Uyeda

Ancestral character state reconstruction has been long used to gain insight into the evolution of individual traits in organisms. However, organismal anatomies (= entire phenotypes) are not merely ensembles of individual traits, rather they are complex systems where traits interact with each other due to anatomical dependencies (when one trait depends on the presence of another trait) and developmental constraints. Comparative phylogenetics has been largely lacking a method for reconstructing the evolution of entire organismal anatomies or organismal body regions. Herein, we present a new approach named PARAMO (Phylogenetic Ancestral Reconstruction of Anatomy by Mapping Ontologies, Tarasov and Uyeda 2019) that takes into account anatomical dependencies and uses stochastic maps (i.e., phylogenetic trees with an instance of mapped evolutionary history of characters, Huelsenbeck et al. 2003) along with anatomy ontologies to reconstruct organismal anatomies. Our approach treats the entire phenotype or its component body regions as single complex characters and allows exploring and comparing phenotypic evolution at different levels of anatomical hierarchy. These complex characters are constructed by ontology-informed amalgamation of elementary characters (i.e., those coded in character matrix) using stochastic maps. In our approach, characters are linked with the terms from an anatomy ontology, which allows viewing them not just as an ensemble of character state tokens but as entities that have their own biological meaning provided by the ontology. This ontology-informed framework provides new opportunities for tracking phenotypic radiations and anatomical evolution of organisms, which we explore using a large dataset for the insect order Hymenoptera (sawflies, wasps, ants and bees).


Author(s):  
Erinna F. Lee ◽  
W. Douglas Fairlie

The discovery of a new class of small molecule compounds that target the BCL-2 family of anti-apoptotic proteins is one of the great success stories of basic science leading to translational outcomes in the last 30 years. The eponymous BCL-2 protein was identified over 30 years ago due to its association with cancer. However, it was the unveiling of the biochemistry and structural biology behind it and its close relatives’ mechanism(s)-of-action that provided the inspiration for what are now known as ‘BH3-mimetics’, the first clinically approved drugs designed to specifically inhibit protein–protein interactions. Herein, we chart the history of how these drugs were discovered, their evolution and application in cancer treatment.


2021 ◽  
Vol 22 (20) ◽  
pp. 10975
Author(s):  
Srinivas Akula ◽  
Zhirong Fu ◽  
Sara Wernersson ◽  
Lars Hellman

Several hematopoietic cells of the immune system store large amounts of proteases in cytoplasmic granules. The absolute majority of these proteases belong to the large family of chymotrypsin-related serine proteases. The chymase locus is one of four loci encoding these granule-associated serine proteases in mammals. The chymase locus encodes only four genes in primates, (1) the gene for a mast-cell-specific chymotryptic enzyme, the chymase; (2) a T-cell-expressed asp-ase, granzyme B; (3) a neutrophil-expressed chymotryptic enzyme, cathepsin G; and (4) a T-cell-expressed chymotryptic enzyme named granzyme H. Interestingly, this locus has experienced a number of quite dramatic expansions during mammalian evolution. This is illustrated by the very large number of functional protease genes found in the chymase locus of mice (15 genes) and rats (18 genes). A separate expansion has also occurred in ruminants, where we find a new class of protease genes, the duodenases, which are expressed in the intestinal region. In contrast, the opossum has only two functional genes in this locus, the mast cell (MC) chymase and granzyme B. This low number of genes may be the result of an inversion, which may have hindered unequal crossing over, a mechanism which may have been a major factor in the expansion within the rodent lineage. The chymase locus can be traced back to early tetrapods as genes that cluster with the mammalian genes in phylogenetic trees can be found in frogs, alligators and turtles, but appear to have been lost in birds. We here present the collected data concerning the evolution of this rapidly evolving locus, and how these changes in gene numbers and specificities may have affected the immune functions in the various tetrapod species.


2015 ◽  
Vol 65 (Pt_11) ◽  
pp. 4276-4283 ◽  
Author(s):  
Takashi Kunisawa

The class Clostridia in the phylum Firmicutes includes a very heterogeneous assemblage of bacteria. Their evolutionary relationships are not well established; revisions of their phylogenetic placements based on comparative studies of 16S rRNA gene sequences are in progress as genome sequence information accumulates. In this work, phylogenetic trees were reconstructed based on 21 concatenated ribosomal protein sequences using Bayesian and maximum-likelihood methods. Both trees consistently indicate that the Halanaerobiales is a deeply branching order among the class Clostridia. The rest of the Clostridia species are grouped into 10 monophyletic clusters, most of which are comprised of two or three orders and families according to the current Clostridial taxonomy. The maximum-likelihood tree placed Coprothermobacter proteolyticus and Thermodesulfobium narugense in the class Clostridia in accordance with the current taxonomy, in which these two bacteria are assigned to the family Thermodesulfobiaceae. However, the Bayesian tree placed these two bacteria at the boundary between the Firmicutes and Actinobacteria. A gene arrangement that is present uniquely in the Firmicutes species was identified. Both Coprothermobacter proteolyticus and Thermodesulfobium narugense do not have this arrangement characteristic of the Firmicutes. On the basis of the Bayesian tree and gene arrangement comparison, it is suggested that Coprothermobacter proteolyticus and Thermodesulfobium narugense should be placed outside the phylum Firmicutes.


2021 ◽  
pp. 119-143
Author(s):  
Alan C. Love

AbstractFor several decades, a debate has been waged over how to interpret the significance of fossils from the Burgess Shale and Cambrian Explosion. Stephen Jay Gould argued that if the “tape of life” was rerun, then the resulting lineages would differ radically from what we find today, implying that humans are a happy accident of evolution. Simon Conway Morris argued that if the “tape of life” was rerun, the resulting lineages would be similar to what we now observe, implying that intelligence would still emerge from an evolutionary process. Recent methodological innovations in paleontological practice call into question both positions and suggest that global claims about the history of life, whether in terms of essential contingency or predictable convergence, are unwarranted.


F1000Research ◽  
2014 ◽  
Vol 3 ◽  
pp. 49 ◽  
Author(s):  
Fabian Schreiber

Summary: Phylogenetic trees are widely used to represent the evolution of gene families. As the history of gene families can be complex (including lots of gene duplications), its visualisation can become a difficult task. A good/accurate visualisation of phylogenetic trees - especially on the web - allows easier understanding and interpretation of trees to help to reveal the mechanisms that shape the evolution of a specific set of gene/species. Here, I present treeWidget, a modular BioJS component to visualise phylogenetic trees on the web. Through its modularity, treeWidget can be easily customized to allow the display of sequence information, e.g. protein domains and alignment conservation patterns.Availability: http://github.com/biojs/biojs; http://dx.doi.org/10.5281/zenodo.7707


Development ◽  
1994 ◽  
Vol 1994 (Supplement) ◽  
pp. 15-25
Author(s):  
Hervé Philippe ◽  
Anne Chenuil ◽  
André Adoutte

Most of the major invertebrate phyla appear in the fossil record during a relatively short time interval, not exceeding 20 million years (Myr), 540-520 Myr ago. This rapid diversification is known as the `Cambrian explosion'. In the present paper, we ask whether molecular phylogenetic reconstruction provides confirmation for such an evolutionary burst. The expectation is that the molecular phylogenetic trees should take the form of a large unresolved multifurcation of the various animal lineages. Complete 18S rRNA sequences of 69 extant representatives of 15 animal phyla were obtained from data banks. After eliminating a major source of artefact leading to lack of resolution in phylogenetic trees (mutational saturation of sequences), we indeed observe that the major lines of triploblast coelomates (arthropods, molluscs, echinoderms, chordates...) are very poorly resolved i.e. the nodes defining the various clades are not supported by high bootstrap values. Using a previously developed procedure consisting of calculating bootstrap proportions of each node of the tree as a function of increasing amount of nucleotides (Lecointre, G., Philippe, H. Le, H. L. V. and Le Guyader, H. (1994) Mol. Phyl. Evol., in press) we obtain a more informative indication of the robustness of each node. In addition, this procedure allows us to estimate the number of additional nucleotides that would be required to resolve confidently the currently uncertain nodes; this number turns out to be extremely high and experimentally unfeasible. We then take this approach one step further: using parameters derived from the above analysis, assuming a molecular clock and using palaeontological dates for calibration, we establish a relationship between the number of sites contained in a given data set and the time interval that this data set can confidently resolve (with 95% bootstrap support). Under these assumptions, the presently available 18S rRNA database cannot confidently resolve cladogenetic events separated by less than about 40 Myr. Thus, at the present time, the potential resolution by the palaeontological approach is higher than that by the molecular one.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
João PL Castro ◽  
Michelle N Yancoskie ◽  
Marta Marchini ◽  
Stefanie Belohlavy ◽  
Layla Hiramatsu ◽  
...  

Evolutionary studies are often limited by missing data that are critical to understanding the history of selection. Selection experiments, which reproduce rapid evolution under controlled conditions, are excellent tools to study how genomes evolve under selection. Here we present a genomic dissection of the Longshanks selection experiment, in which mice were selectively bred over 20 generations for longer tibiae relative to body mass, resulting in 13% longer tibiae in two replicates. We synthesized evolutionary theory, genome sequences and molecular genetics to understand the selection response and found that it involved both polygenic adaptation and discrete loci of major effect, with the strongest loci tending to be selected in parallel between replicates. We show that selection may favor de-repression of bone growth through inactivating two limb enhancers of an inhibitor, Nkx3-2. Our integrative genomic analyses thus show that it is possible to connect individual base-pair changes to the overall selection response.


Sign in / Sign up

Export Citation Format

Share Document