scholarly journals Successful immunotherapy induces previously unidentified allergen-specific CD4+ T-cell subsets

2016 ◽  
Vol 113 (9) ◽  
pp. E1286-E1295 ◽  
Author(s):  
John F. Ryan ◽  
Rachel Hovde ◽  
Jacob Glanville ◽  
Shu-Chen Lyu ◽  
Xuhuai Ji ◽  
...  

Allergen immunotherapy can desensitize even subjects with potentially lethal allergies, but the changes induced in T cells that underpin successful immunotherapy remain poorly understood. In a cohort of peanut-allergic participants, we used allergen-specific T-cell sorting and single-cell gene expression to trace the transcriptional “roadmap” of individual CD4+ T cells throughout immunotherapy. We found that successful immunotherapy induces allergen-specific CD4+ T cells to expand and shift toward an “anergic” Th2 T-cell phenotype largely absent in both pretreatment participants and healthy controls. These findings show that sustained success, even after immunotherapy is withdrawn, is associated with the induction, expansion, and maintenance of immunotherapy-specific memory and naive T-cell phenotypes as early as 3 mo into immunotherapy. These results suggest an approach for immune monitoring participants undergoing immunotherapy to predict the success of future treatment and could have implications for immunotherapy targets in other diseases like cancer, autoimmune disease, and transplantation.

2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Kaku So-Armah ◽  
Matthew Freiberg ◽  
Debbie Cheng ◽  
Joseph K. Lim ◽  
Natalia Gnatienko ◽  
...  

Abstract Background The multifactorial mechanisms driving negative health outcomes among risky drinkers with HIV may include immunosenescence. Immunosenescence, aging of the immune system, may be accentuated in HIV and leads to poor outcomes. The liver regulates innate immunity and adaptive immune tolerance. HIV-infected people have high prevalence of liver-related comorbidities. We hypothesize that advanced liver fibrosis/cirrhosis is associated with alterations in T-cell subsets consistent with immunosenescence. Methods ART-naïve people with HIV with a recent history of heavy drinking were recruited into a clinical trial of zinc supplementation. Flow cytometry was used to characterize T-cell subsets. The two primary dependent variables were CD8+ and CD4+ T-cells expressing CD28-CD57+ (senescent cell phenotype). Secondary dependent variables were CD8+ and CD4+ T-cells expressing CD45RO + CD45RA- (memory phenotype), CD45RO-CD45RA+ (naïve phenotype), and the naïve phenotype to memory phenotype T-cell ratio (lower ratios associated with immunosenescence). Advanced liver fibrosis/cirrhosis was defined as FIB-4 > 3.25, APRI≥1.5, or Fibroscan measurement ≥10.5 kPa. Analyses were conducted using multiple linear regression adjusted for potential confounders. Results Mean age was 34 years; 25% female; 88% hepatitis C. Those with advanced liver fibrosis/cirrhosis (N = 25) had higher HIV-1 RNA and more hepatitis C. Advanced liver fibrosis/cirrhosis was not significantly associated with primary or secondary outcomes in adjusted analyses. Conclusions Advanced liver fibrosis/cirrhosis was not significantly associated with these senescent T-cell phenotypes in this exploratory study of recent drinkers with HIV. Future studies should assess whether liver fibrosis among those with HIV viral suppression and more advanced, longstanding liver disease is associated with changes in these and other potentially senescent T-cell subsets.


2019 ◽  
Vol 5 (8) ◽  
pp. eaaw8330 ◽  
Author(s):  
Yehezqel Elyahu ◽  
Idan Hekselman ◽  
Inbal Eizenberg-Magar ◽  
Omer Berner ◽  
Itai Strominger ◽  
...  

Age-associated changes in CD4 T-cell functionality have been linked to chronic inflammation and decreased immunity. However, a detailed characterization of CD4 T cell phenotypes that could explain these dysregulated functional properties is lacking. We used single-cell RNA sequencing and multidimensional protein analyses to profile thousands of CD4 T cells obtained from young and old mice. We found that the landscape of CD4 T cell subsets differs markedly between young and old mice, such that three cell subsets—exhausted, cytotoxic, and activated regulatory T cells (aTregs)—appear rarely in young mice but gradually accumulate with age. Most unexpected were the extreme pro- and anti-inflammatory phenotypes of cytotoxic CD4 T cells and aTregs, respectively. These findings provide a comprehensive view of the dynamic reorganization of the CD4 T cell milieu with age and illuminate dominant subsets associated with chronic inflammation and immunity decline, suggesting new therapeutic avenues for age-related diseases.


Immuno ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 119-131
Author(s):  
Jana Palmowski ◽  
Kristina Gebhardt ◽  
Thomas Reichel ◽  
Torsten Frech ◽  
Robert Ringseis ◽  
...  

CD4+ T cells are sensitive to peripheral changes of cytokine levels and metabolic substrates such as glucose and lactate. This study aimed to analyze whether factors released after exercise alter parameters of human T cell metabolism, specifically glycolysis and oxidative phosphorylation. We used primary human CD4+ T cells activated in the presence of autologous serum, which was collected before (CO) and after a 30-min exercise intervention (EX). In the course of activation, cells and supernatants were analyzed for cell viability and diameter, real-time oxygen consumption by using PreSens Technology, mRNA expression of glycolytic enzymes and complexes of the electron transport chain by real-time PCR, glucose, and lactate levels in supernatants, and in vitro differentiation by flow cytometry. EX did not alter T cell phenotype, viability, or on-blast formation. Similarly, no difference between CO and EX were found for CD4+ T cell activation and cellular oxygen consumption. In contrast, higher levels of glucose were found after 48 h activation in EX conditions. T cells activated in autologous exercise serum expressed lower HK1 mRNA and higher IFN-γ receptor 1. We suggest that the exercise protocol used was not sufficient to destabilize the immune metabolism of T cells. Therefore, more intense and prolonged exercise should be used in future studies.


2015 ◽  
Vol 213 (1) ◽  
pp. 123-138 ◽  
Author(s):  
Arata Takeuchi ◽  
Mohamed El Sherif Gadelhaq Badr ◽  
Kosuke Miyauchi ◽  
Chitose Ishihara ◽  
Reiko Onishi ◽  
...  

Naive T cells differentiate into various effector T cells, including CD4+ helper T cell subsets and CD8+ cytotoxic T cells (CTL). Although cytotoxic CD4+ T cells (CD4+CTL) also develop from naive T cells, the mechanism of development is elusive. We found that a small fraction of CD4+ T cells that express class I–restricted T cell–associated molecule (CRTAM) upon activation possesses the characteristics of both CD4+ and CD8+ T cells. CRTAM+ CD4+ T cells secrete IFN-γ, express CTL-related genes, such as eomesodermin (Eomes), Granzyme B, and perforin, after cultivation, and exhibit cytotoxic function, suggesting that CRTAM+ T cells are the precursor of CD4+CTL. Indeed, ectopic expression of CRTAM in T cells induced the production of IFN-γ, expression of CTL-related genes, and cytotoxic activity. The induction of CD4+CTL and IFN-γ production requires CRTAM-mediated intracellular signaling. CRTAM+ T cells traffic to mucosal tissues and inflammatory sites and developed into CD4+CTL, which are involved in mediating protection against infection as well as inducing inflammatory response, depending on the circumstances, through IFN-γ secretion and cytotoxic activity. These results reveal that CRTAM is critical to instruct the differentiation of CD4+CTL through the induction of Eomes and CTL-related gene.


2012 ◽  
Vol 209 (12) ◽  
pp. 2263-2276 ◽  
Author(s):  
Tom M. McCaughtry ◽  
Ruth Etzensperger ◽  
Amala Alag ◽  
Xuguang Tai ◽  
Sema Kurtulus ◽  
...  

The thymus generates T cells with diverse specificities and functions. To assess the contribution of cytokine receptors to the differentiation of T cell subsets in the thymus, we constructed conditional knockout mice in which IL-7Rα or common cytokine receptor γ chain (γc) genes were deleted in thymocytes just before positive selection. We found that γc expression was required to signal the differentiation of MHC class I (MHC-I)–specific thymocytes into CD8+ cytotoxic lineage T cells and into invariant natural killer T cells but did not signal the differentiation of MHC class II (MHC-II)–specific thymocytes into CD4+ T cells, even into regulatory Foxp3+CD4+ T cells which require γc signals for survival. Importantly, IL-7 and IL-15 were identified as the cytokines responsible for CD8+ cytotoxic T cell lineage specification in vivo. Additionally, we found that small numbers of aberrant CD8+ T cells expressing Runx3d could arise without γc signaling, but these cells were developmentally arrested before expressing cytotoxic lineage genes. Thus, γc-transduced cytokine signals are required for cytotoxic lineage specification in the thymus and for inducing the differentiation of MHC-I–selected thymocytes into functionally mature T cells.


2020 ◽  
Author(s):  
Benjamin G. Wiggins ◽  
Laura J. Pallett ◽  
Xiaoyan Li ◽  
Scott P. Davies ◽  
Oliver E. Amin ◽  
...  

ABSTRACTBackground & AimsTissue-resident memory T cells (TRM) are important immune sentinels that provide efficient in situ immunity. Liver-resident CD8+ TRM have been previously described, and contribute to viral control in persistent hepatotropic infections. However, little is known regarding liver CD4+ TRM cells. Here we profiled resident and non-resident intrahepatic CD4+ T cell subsets, assessing their phenotype, function, differential generation requirements and roles in hepatotropic infection.MethodsLiver tissue was obtained from 173 subjects with (n=109) or without (n=64) hepatic pathology. Multiparametric flow cytometry and immunofluorescence imaging examined T cell phenotype, functionality and location. Liver T cell function was determined after stimulation with anti-CD3/CD28 and PMA/Ionomycin. Co-cultures of blood-derived lymphocytes with hepatocyte cell lines, primary biliary epithelial cells, and precision-cut autologous liver slices were used to investigate the acquisition of liver-resident phenotypes.ResultsCD69 expression delineated two distinct subsets in the human liver. CD69HI cells were identified as CD4+ TRM due to exclusion from the circulation, a residency-associated phenotype (CXCR6+CD49a+S1PR1-PD-1+), restriction to specific liver niches, and ability to produce robust type-1 multifunctional cytokine responses. Conversely, CD69INT were an activated T cell population also found in the peripheral circulation, with a distinct homing profile (CX3CR1+CXCR3+CXCR1+), and a bias towards IL-4 production. Frequencies of CD69INT cells correlated with the degree of fibrosis in chronic hepatitis B virus infection. Interaction with hepatic epithelia was sufficient to generate CD69INT cells, while additional signals from the liver microenvironment were required to generate liver-resident CD69HI cells.ConclusionsIntermediate and high CD69 expression demarcates two discrete intrahepatic CD4+ T cell subsets with distinct developmental and functional profiles.Graphical AbstractHighlightsCD69HI (CXCR6+CD49a+S1PR1-PD-1+) are the CD4+ TRM of the human liverHepatic CD69INTCD4+ T-cells are distinct, activated, and recirculation-competentStimulation evokes respective IFN-γ and IL-4 responses in CD69HI and CD69INT cellsCD69INT cell frequencies correlate with worsening fibrosis in chronic HBV patientsLiver slice cultures allow differentiation of CD69INT and CD69HI cells from bloodLay summaryTissue-resident memory T cells (TRM) orchestrate regional immune responses, but much of the biology of liver-resident CD4+ TRM remains unknown. We found high expression of cell-surface protein CD69 defined hepatic CD4+ TRM, while simultaneously uncovering a distinct novel recirculatory CD69INT CD4+ T cell subset. Both subsets displayed unique immune receptor profiles, were functionally skewed towards type-1 and type-2 responses respectively, and had distinct generation requirements, highlighting the potential for differential roles in the immunopathology of chronic liver diseases.


2016 ◽  
Vol 213 (11) ◽  
pp. 2413-2435 ◽  
Author(s):  
Yi Wang ◽  
Cindy S. Ma ◽  
Yun Ling ◽  
Aziz Bousfiha ◽  
Yildiz Camcioglu ◽  
...  

Combined immunodeficiency (CID) refers to inborn errors of human T cells that also affect B cells because of the T cell deficit or an additional B cell–intrinsic deficit. In this study, we report six patients from three unrelated families with biallelic loss-of-function mutations in RLTPR, the mouse orthologue of which is essential for CD28 signaling. The patients have cutaneous and pulmonary allergy, as well as a variety of bacterial and fungal infectious diseases, including invasive tuberculosis and mucocutaneous candidiasis. Proportions of circulating regulatory T cells and memory CD4+ T cells are reduced. Their CD4+ T cells do not respond to CD28 stimulation. Their CD4+ T cells exhibit a "Th2" cell bias ex vivo and when cultured in vitro, contrasting with the paucity of "Th1," "Th17," and T follicular helper cells. The patients also display few memory B cells and poor antibody responses. This B cell phenotype does not result solely from the T cell deficiency, as the patients’ B cells fail to activate NF-κB upon B cell receptor (BCR) stimulation. Human RLTPR deficiency is a CID affecting at least the CD28-responsive pathway in T cells and the BCR-responsive pathway in B cells.


Cells ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 634 ◽  
Author(s):  
Sophie Buhelt ◽  
Helle Bach Søndergaard ◽  
Annette Oturai ◽  
Henrik Ullum ◽  
Marina Rode von Essen ◽  
...  

Single nucleotide polymorphisms (SNPs) in or near the IL2RA gene, that encodes the interleukin-2 (IL-2) receptor α (CD25), are associated with increased risk of immune-mediated diseases including multiple sclerosis (MS). We investigated how the MS-associated IL2RA SNPs rs2104286 and rs11256593 are associated with CD25 expression on T cells ex vivo by multiparameter flow cytometry in paired genotype-selected healthy controls. We observed that MS-associated IL2RA SNPs rs2104286 and rs11256593 are associated with expression of CD25 in CD4+ but not CD8+ T cells. In CD4+ T cells, carriers of the risk genotype had a reduced frequency of CD25+ TFH1 cells (p = 0.001) and an increased frequency of CD25+ recent thymic emigrant cells (p = 0.006). Furthermore, carriers of the risk genotype had a reduced surface expression of CD25 in post-thymic expanded CD4+ T cells (CD31−CD45RA+), CD39+ TReg cells and in several non-follicular memory subsets. Our study found novel associations of MS-associated IL2RA SNPs on expression of CD25 in CD4+ T cell subsets. Insight into the associations of MS-associated IL2RA SNPs, as these new findings provide, offers a better understanding of CD25 variation in the immune system and can lead to new insights into how MS-associated SNPs contribute to development of MS.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1071-1071
Author(s):  
Melody M. Smith ◽  
Cynthia R. Giver ◽  
Edmund K. Waller ◽  
Christopher R. Flowers

Abstract Ex vivo modification of donor lymphocytes with purine analogs (mDL) may help to minimize graft versus host disease (GvHD) while providing beneficial graft versus leukemia (GvL) effects. In a murine model system, we have shown that allogeneic donor splenocytes, treated with fludarabine ex vivo have significantly reduced GvHD activity when transferred to irradiated recipient mice, and retain anti-viral and GvL activities (Giver, 2003). This effect appears to be mediated by relative depletion of donor CD4 CD44low, “naive” T-cells. As a first step toward developing mDL for use in patients, we sought to evaluate the effects of ex vivo fludarabine exposure on human T-cell subsets, and to determine the minimum dose of fludarabine required to achieve this effect. Methods: Peripheral blood mononuclear cell samples from 6 healthy volunteers were evaluated at 0, 24, 48, and 72 hour time points after ex vivo incubation in varying dosages of fludarabine: 2, 5, and 10(n=3) mcg/ml. Fludarabine incubated samples were compared to samples that received no fludarabine (untreated). The total viable cell number was determined and the fractions and absolute numbers of viable CD4 and CD8 naïve and memory T-cells were determined using flow cytometry after incubation with 7-AAD (dead cell stain), CD4, CD8, CD45RA, CD62L, and CCR7 antibodies, and measuring the total viable cells/ml. Results: The numbers of viable CD4 and CD8 T-cells remained relatively stable in control cultures. Without fludarabine, the average viability at 72 hr of naive and memory T-cells were 92% and 77% for CD4 and 86% and 63% for CD 8 (Fig. 1A). Naive CD4 T-cells were more sensitive to fludarabine-induced death than memory CD4 cells. At 72 hr, the average viability of fludarabine-treated naive CD4 T-cells was 33% at 2 mcg/ml (8.2X the reduction observed in untreated cells) and 30% at 5 mcg/ml, while memory CD4 T-cells averaged 47% viability at 2 mcg/ml (2.3X the reduction observed in untreated cells) (Fig. 1B) and 38% at 5 mcg/ml. The average viability of naive CD8 T-cells at 72 hr was 27% at 2 mcg/ml and 20% at 5 mcg/ml, while memory CD8 T-cell viability was 22% at 2 mcg/ml and 17% at 5 mcg/ml. Analyses on central memory, effector memory, and Temra T-cells, and B-cell and dendritic cell subsets are ongoing. The 5 and 10 mcg/ml doses also yielded similar results in 3 initial subjects, suggesting that 2 mcg/ml or a lower dose of fludarabine is sufficient to achieve relative depletion of the naive T-cell subset. Conclusions: Future work will determine the minimal dose of fludarabine to achieve this effect, test the feasibility of using ex vivo nucleoside analog incubation to reduce alloreactivity in samples from patient/donor pairs, and determine the maximum tolerated dose of mDL in a phase 1 clinical trial with patients at high risk for relapse and infectious complications following allogeneic transplantation. Figure Figure


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2648-2648
Author(s):  
Fuliang Chu ◽  
Wencai Ma ◽  
Tomohide Yamazaki ◽  
Myriam Foglietta ◽  
Durga Nattama ◽  
...  

Abstract Abstract 2648 Background: Programmed death (PD)-1, a coinhibitory receptor expressed by effector T cells (Teffs) is highly expressed on intratumoral T cells (mean 61%, range 34–86% for CD4+ T cells and mean 44%, range 31–69% for CD8+ T cells) in follicular lymphoma (FL), a finding associated with impaired ability to recognize autologous tumor (Nattamai et al, ASH 2007). Hence, PD-1 expression would be expected to confer an unfavorable prognosis in FL. However, correlation of PD-1 with clinical outcome in FL has been inconsistent with two studies showing favorable (Carreras et al, J Clin Oncol 2009; Wahlin et al, Clin Cancer Res 2010) and one study showing unfavorable (Richendollar et al, Hum Pathol 2011) outcome. While differences in method of analysis and type of treatment may explain the disparate results, a more complex model may be necessary to understand the prognostic impact of PD-1 in FL as PD-1 is expressed not only on antitumor Teffs but also on protumor follicular helper T cells (Tfh) and regulatory T cells (Tregs). Methods: To determine the nature of PD-1+ T cells in FL we performed comprehensive genomic and immunologic studies. By flow cytometry, we observed that the intratumoral CD4+ T cells in FL may be categorized into 3 subsets based on PD-1 expression - PD-1 high (PD-1hi), intermediate (PD-1int), and low (PD-1lo). The intratumoral CD8+ T cells consisted of PD-1int and PD-1lo subsets. The 3 CD4+ T cell subsets were FACSorted from FL tumors (n=3) and whole genome gene expression profiling (GEP) was performed. T cell subsets sorted similarly from tonsils served as controls for reactive follicular hyperplasia (FH) (n=3). Differentially expressed genes in GEP studies were confirmed at the mRNA level by real-time PCR (n=5) and at the protein level by flow cytometry when antibodies were available (n=5–10). Results: Our results suggested that CD4+PD-1hi T cells are Tfh cells (CXCR5hiBcl6hi ICOShiCD40LhiSAPhiPRDM1loIL-4hiIL-21hi); the CD4+PD-1int T cells consisted of a mixture of activated Teffs (CD45RO+CD45RA−) including Th1 (Tbet+IFNg+), Th2 (IL-10+), and Th17 cells (RORc+IL-17+), and Tregs (Foxp3+CD25hiCD127lo); and the CD4+PD-1lo T cells consisted of a mixture of activated Teffs (CD45RO+CD45RA− but IFNg−IL-4−IL-10−IL-17−), Tregs, and naïve T cells (CD45RO−CD45RA+CCR7+). Although these subsets were present in both FL and FH, there were important differences. IL-4 expression was significantly higher in Tfh in FL vs. FH and may play a role in the pathogenesis of FL. IL-17 expression was low and expression of coinhibitory molecules BTLA and CD200 was high in CD4+PD-1int T cells in FL vs. FH. BTLA and CD200 were also increased in CD8+PD-1int T cells in FL vs. FH. However, other coinhibitory molecules (LAG-3, Tim-3, CD160, CTLA-4, CD244, KLRG1) were not significantly different between FL and FH. CD4+PD-1int T cells also had higher expression of BATF, a transcription factor associated with T cell exhaustion in FL vs. FH. Together, these results suggest that the CD4+PD-1int T cells in FL may be in a state of T cell exhaustion whereas the CD4+PD-1int T cells in FH may represent recently activated Teffs. Consistent with this, blocking PD-1 with anti-PD-1 blocking antibody significantly enhanced proliferation and the production of Th1 (IFNg, TNFa) but not Th2 (IL-4, IL-5, IL-10, IL-13) cytokines by intratumoral CD4+ and CD8+ T cells in response to stimulation with autologous FL tumor cells (n=3). As expected, Tregs were increased in number in FL vs. FH and were present in the PD-1int and PD-1lo T cell subsets. We found 74% (range 40–97%) of FL Tregs expressed PD-1. Among the CD4+PD-1lo and CD8+PD-1lo T cells, there were more activated Teffs and fewer naïve T cells in FL vs. FH. Conclusions: Our results suggest that the PD-1+ T cells in FL are comprised of a mixture of antitumor Teffs and protumor Tfh and Tregs. The prognostic impact of PD-1+ T cells in FL may dependent on the relative frequency of these subsets as ligation of PD-1 may produce favorable (inhibition of protumor Tfh and Tregs) or unfavorable (inhibition of antitumor Teffs) outcomes by inhibiting or promoting tumor growth, respectively. Conversely, our results imply that agents that block PD-1/PD-ligand pathway may have the opposite effect on these T cell subsets and enumeration of the intratumoral PD-1+ T cell subsets may serve as biomarker to predict response to these agents in FL and possibly other B-cell malignancies. Disclosures: Dong: GSK: Consultancy; Genentech: Honoraria; Tempero: Consultancy; Ono: Consultancy; AnaptysBio: Consultancy. Neelapu:Cure Tech Ltd: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document