scholarly journals Zika plasma viral dynamics in nonhuman primates provides insights into early infection and antiviral strategies

2017 ◽  
Vol 114 (33) ◽  
pp. 8847-8852 ◽  
Author(s):  
Katharine Best ◽  
Jeremie Guedj ◽  
Vincent Madelain ◽  
Xavier de Lamballerie ◽  
So-Yon Lim ◽  
...  

The recent outbreak of Zika virus (ZIKV) has been associated with fetal abnormalities and neurological complications, prompting global concern. Here we present a mathematical analysis of the within-host dynamics of plasma ZIKV burden in a nonhuman primate model, allowing for characterization of the growth and clearance of ZIKV within individual macaques. We estimate that the eclipse phase for ZIKV, the time between cell infection and viral production, is most likely short (∼4 h), the median within-host basic reproductive number R0 is 10.7, the rate of viral production is rapid (>25,000 virions d−1), and the lifetime of an infected cell while producing virus is ∼5 h. We also estimate that the minimum number of virions produced by an infected cell over its lifetime is ∼5,500. We assess the potential effect of an antiviral treatment that blocks viral replication, showing that the median time to undetectable plasma viral load (VL) can be reduced from ∼5 d to ∼3 d with a drug concentration ∼15 times the drug’s EC50 when treatment is given prophylactically starting at the time of infection. In the case of favipiravir, a polymerase inhibitor with activity against ZIKV, we predict a dose of 150 mg/kg given twice a day initiated at the time of infection can reduce the peak median VL by ∼3 logs and shorten the time to undetectable median VL by ∼2 d, whereas treatment given 2 d postinfection is mostly ineffective in accelerating plasma VL loss in macaques.

2007 ◽  
Vol 5 (22) ◽  
pp. 545-553 ◽  
Author(s):  
N Arinaminpathy ◽  
A.R McLean

Disease control programmes for an influenza pandemic will rely initially on the deployment of antiviral drugs such as Tamiflu, until a vaccine becomes available. However, such control programmes may be severely hampered by logistical constraints such as a finite stockpile of drugs and a limit on the distribution rate. We study the effects of such constraints using a compartmental modelling approach. We find that the most aggressive possible antiviral programme minimizes the final epidemic size, even if this should lead to premature stockpile run-out. Moreover, if the basic reproductive number R 0 is not too high, such a policy can avoid run-out altogether. However, where run-out would occur, such benefits must be weighed against the possibility of a higher epidemic peak than if a more conservative policy were followed. Where there is a maximum number of treatment courses that can be dispensed per day, reflecting a manpower limit on antiviral distribution, our results suggest that such a constraint is unlikely to have a significant impact (i.e. increasing the final epidemic size by more than 10%), as long as drug courses sufficient to treat at least 6% of the population can be dispensed per day.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Sumei Li ◽  
Yicang Zhou

A mathematical model of human T-cell lymphotropic virus type 1 in vivo with cell-to-cell infection and mitosis is formulated and studied. The basic reproductive numberR0is derived. It is proved that the dynamics of the model can be determined completely by the magnitude ofR0. The infection-free equilibrium is globally asymptotically stable (unstable) ifR0<1  (R0>1). There exists a chronic infection equilibrium and it is globally asymptotically stable ifR0>1.


2020 ◽  
Vol 13 (07) ◽  
pp. 2050060
Author(s):  
Shaoli Wang ◽  
Achun Zhang ◽  
Fei Xu

In this paper, certain delayed virus dynamical models with cell-to-cell infection and density-dependent diffusion are investigated. For the viral model with a single strain, we have proved the well-posedness and studied the global stabilities of equilibria by defining the basic reproductive number [Formula: see text] and structuring proper Lyapunov functional. Moreover, we found that the infection-free equilibrium is globally asymptotically stable if [Formula: see text], and the infection equilibrium is globally asymptotically stable if [Formula: see text]. For the multi-strain model, we found that all viral strains coexist if the corresponding basic reproductive number [Formula: see text], while virus will extinct if [Formula: see text]. As a result, we found that delay and the density-dependent diffusion does not influence the global stability of the model with cell-to-cell infection and homogeneous Neumann boundary conditions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fernando Colchero ◽  
Winnie Eckardt ◽  
Tara Stoinski

AbstractThe current COVID-19 pandemic has created unmeasurable damages to society at a global level, from the irreplaceable loss of life, to the massive economic losses. In addition, the disease threatens further biodiversity loss. Due to their shared physiology with humans, primates, and particularly great apes, are susceptible to the disease. However, it is still uncertain how their populations would respond in case of infection. Here, we combine stochastic population and epidemiological models to simulate the range of potential effects of COVID-19 on the probability of extinction of mountain gorillas. We find that extinction is sharply driven by increases in the basic reproductive number and that the probability of extinction is greatly exacerbated if the immunity lasts less than 6 months. These results stress the need to limit exposure of the mountain gorilla population, the park personnel and visitors, as well as the potential of vaccination campaigns to extend the immunity duration.


2009 ◽  
Vol 83 (15) ◽  
pp. 7659-7667 ◽  
Author(s):  
Christian L. Althaus ◽  
Anneke S. De Vos ◽  
Rob J. De Boer

ABSTRACT The rapid decay of the viral load after drug treatment in patients infected with human immunodeficiency virus type 1 (HIV-1) has been shown to result from the rapid loss of infected cells due to their high turnover, with a generation time of around 1 to 2 days. Traditionally, viral decay dynamics after drug treatment is investigated using models of differential equations in which both the death rate of infected cells and the viral production rate are assumed to be constant. Here, we describe age-structured models of the viral decay dynamics in which viral production rates and death rates depend on the age of the infected cells. In order to investigate the effects of age-dependent rates, we compared these models with earlier descriptions of the viral load decay and fitted them to previously published data. We have found no supporting evidence that infected-cell death rates increase, but cannot reject the possibility that viral production rates increase, with the age of the cells. In particular, we demonstrate that an exponential increase in viral production with infected-cell age is perfectly consistent with the data. Since an exponential increase in virus production can compensate for the exponential loss of infected cells, the death rates of HIV-1-infected cells may be higher than previously anticipated. We discuss the implications of these findings for the life span of infected cells, the viral generation time, and the basic reproductive number, R 0.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Yu Kong ◽  
Tao Li ◽  
Yuanmei Wang ◽  
Xinming Cheng ◽  
He Wang ◽  
...  

AbstractNowadays, online gambling has a great negative impact on the society. In order to study the effect of people’s psychological factors, anti-gambling policy, and social network topology on online gambling dynamics, a new SHGD (susceptible–hesitator–gambler–disclaimer) online gambling spreading model is proposed on scale-free networks. The spreading dynamics of online gambling is studied. The basic reproductive number $R_{0}$ R 0 is got and analyzed. The basic reproductive number $R_{0}$ R 0 is related to anti-gambling policy and the network topology. Then, gambling-free equilibrium $E_{0}$ E 0 and gambling-prevailing equilibrium $E_{ +} $ E + are obtained. The global stability of $E_{0}$ E 0 is analyzed. The global attractivity of $E_{ +} $ E + and the persistence of online gambling phenomenon are studied. Finally, the theoretical results are verified by some simulations.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hamid Khataee ◽  
Istvan Scheuring ◽  
Andras Czirok ◽  
Zoltan Neufeld

AbstractA better understanding of how the COVID-19 pandemic responds to social distancing efforts is required for the control of future outbreaks and to calibrate partial lock-downs. We present quantitative relationships between key parameters characterizing the COVID-19 epidemiology and social distancing efforts of nine selected European countries. Epidemiological parameters were extracted from the number of daily deaths data, while mitigation efforts are estimated from mobile phone tracking data. The decrease of the basic reproductive number ($$R_0$$ R 0 ) as well as the duration of the initial exponential expansion phase of the epidemic strongly correlates with the magnitude of mobility reduction. Utilizing these relationships we decipher the relative impact of the timing and the extent of social distancing on the total death burden of the pandemic.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1164
Author(s):  
Weiwei Ling ◽  
Pinxia Wu ◽  
Xiumei Li ◽  
Liangjin Xie

By using differential equations with discontinuous right-hand sides, a dynamic model for vector-borne infectious disease under the discontinuous removal of infected trees was established after understanding the transmission mechanism of Huanglongbing (HLB) disease in citrus trees. Through calculation, the basic reproductive number of the model can be attained and the properties of the model are discussed. On this basis, the existence and global stability of the calculated equilibria are verified. Moreover, it was found that different I0 in the control strategy cannot change the dynamic properties of HLB disease. However, the lower the value of I0, the fewer HLB-infected citrus trees, which provides a theoretical basis for controlling HLB disease and reducing expenditure.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Bingyi Yang ◽  
Angkana T. Huang ◽  
Bernardo Garcia-Carreras ◽  
William E. Hart ◽  
Andrea Staid ◽  
...  

AbstractNon-pharmaceutical interventions (NPIs) remain the only widely available tool for controlling the ongoing SARS-CoV-2 pandemic. We estimated weekly values of the effective basic reproductive number (Reff) using a mechanistic metapopulation model and associated these with county-level characteristics and NPIs in the United States (US). Interventions that included school and leisure activities closure and nursing home visiting bans were all associated with a median Reff below 1 when combined with either stay at home orders (median Reff 0.97, 95% confidence interval (CI) 0.58–1.39) or face masks (median Reff 0.97, 95% CI 0.58–1.39). While direct causal effects of interventions remain unclear, our results suggest that relaxation of some NPIs will need to be counterbalanced by continuation and/or implementation of others.


Sign in / Sign up

Export Citation Format

Share Document