scholarly journals Exploring the potential effect of COVID-19 on an endangered great ape

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fernando Colchero ◽  
Winnie Eckardt ◽  
Tara Stoinski

AbstractThe current COVID-19 pandemic has created unmeasurable damages to society at a global level, from the irreplaceable loss of life, to the massive economic losses. In addition, the disease threatens further biodiversity loss. Due to their shared physiology with humans, primates, and particularly great apes, are susceptible to the disease. However, it is still uncertain how their populations would respond in case of infection. Here, we combine stochastic population and epidemiological models to simulate the range of potential effects of COVID-19 on the probability of extinction of mountain gorillas. We find that extinction is sharply driven by increases in the basic reproductive number and that the probability of extinction is greatly exacerbated if the immunity lasts less than 6 months. These results stress the need to limit exposure of the mountain gorilla population, the park personnel and visitors, as well as the potential of vaccination campaigns to extend the immunity duration.

2020 ◽  
Author(s):  
Brinkley Raynor ◽  
Elvis W. Díaz ◽  
Julianna Shinnick ◽  
Edith Zegarra ◽  
Ynes Monroy ◽  
...  

Over the past decades, there has been tremendous progress towards eliminating canine rabies in Latin America. Major components of rabies prevention programs in Latin America leading to these successes have been constant and intense surveillance for rabid dogs and uninterrupted yearly mass dog vaccination campaigns. However, vital measures to control COVID-19 in Latin America have had the negative trade-off of jeopardizing these rabies elimination and prevention activities. In this paper, we aimed to assess the effect of interrupting canine rabies surveillance and mass dog vaccination campaigns on rabies trends. We built a deterministic compartment model of dog rabies dynamics parameterized for conditions found in Arequipa, Peru, where there is an ongoing dog rabies epidemic. Our model suggests that a decrease in canine vaccination coverage as well as decreased surveillance leading to an increased length of survival of infected dogs could lead to a sharp rise in canine rabies and, subsequently, human rabies risk. We examined our results over the best estimate of the basic reproductive number in Arequipa (R0 = 1.44) and a range of plausible values for R0 (1.36 - 2). The rising trend was consistent. It is very possible that COVID-19 will continue to challenge our public health departments in the short- and medium-term. Innovative strategies to conduct dog vaccination and rabies surveillance during these trying times should be considered to safeguard the achievements made in Latin America towards the elimination of dog-mediated human rabies.


2017 ◽  
Vol 114 (33) ◽  
pp. 8847-8852 ◽  
Author(s):  
Katharine Best ◽  
Jeremie Guedj ◽  
Vincent Madelain ◽  
Xavier de Lamballerie ◽  
So-Yon Lim ◽  
...  

The recent outbreak of Zika virus (ZIKV) has been associated with fetal abnormalities and neurological complications, prompting global concern. Here we present a mathematical analysis of the within-host dynamics of plasma ZIKV burden in a nonhuman primate model, allowing for characterization of the growth and clearance of ZIKV within individual macaques. We estimate that the eclipse phase for ZIKV, the time between cell infection and viral production, is most likely short (∼4 h), the median within-host basic reproductive number R0 is 10.7, the rate of viral production is rapid (>25,000 virions d−1), and the lifetime of an infected cell while producing virus is ∼5 h. We also estimate that the minimum number of virions produced by an infected cell over its lifetime is ∼5,500. We assess the potential effect of an antiviral treatment that blocks viral replication, showing that the median time to undetectable plasma viral load (VL) can be reduced from ∼5 d to ∼3 d with a drug concentration ∼15 times the drug’s EC50 when treatment is given prophylactically starting at the time of infection. In the case of favipiravir, a polymerase inhibitor with activity against ZIKV, we predict a dose of 150 mg/kg given twice a day initiated at the time of infection can reduce the peak median VL by ∼3 logs and shorten the time to undetectable median VL by ∼2 d, whereas treatment given 2 d postinfection is mostly ineffective in accelerating plasma VL loss in macaques.


2021 ◽  
Author(s):  
Jonas Balisacan ◽  
Monique Chyba ◽  
Corey Shanbrom

Compartmental models have long served as important tools in mathematical epidemiology, with their usefulness highlighted by the recent COVID-19 pandemic. However, most of the classical models fail to account for certain features of this disease and others like it, such as the ability of exposed individuals to recover without becoming infectious, or the possibility that asymptomatic individuals can indeed transmit the disease but at a lesser rate than the symptomatic. Furthermore, the rise of new disease variants and the imperfection of vaccines suggest that concept of endemic equilibrium is perhaps more pertinent than that of herd immunity. Here we propose a new compartmental epidemiological model and study its equilibria, characterizing the stability of both the endemic and disease-free equilibria in terms of the basic reproductive number. Moreover, we introduce a second compartmental model, generalizing our first, which accounts for vaccinated individuals, and begin an analysis of its equilibria.


2009 ◽  
Vol 7 (44) ◽  
pp. 439-451 ◽  
Author(s):  
Nik J. Cunniffe ◽  
Christopher A. Gilligan

Many epidemiological models for plant disease include host demography to describe changes in the availability of susceptible tissue for infection. We compare the effects of using two commonly used formulations for host growth, one linear and the other nonlinear, upon the outcomes for invasion, persistence and control of pathogens in a widely used, generic model for botanical epidemics. The criterion for invasion, reflected in the basic reproductive number, R 0 , is unaffected by host demography: R 0 is simply a function of epidemiological parameters alone. When, however, host growth is intrinsically nonlinear, unexpected results arise for persistence and the control of disease. The endemic level of infection ( I ∞ ) also depends upon R 0 . We show, however, that the sensitivity of I ∞ to changes in R 0 > 1 depends upon which underlying epidemiological parameter is changed. Increasing R 0 by shortening the infectious period results in a monotonic increase in I ∞ . If, however, an increase in R 0 is driven by increases in transmission rates or by decreases in the decay of free-living inoculum, I ∞ first increases ( R 0 < 2), but then decreases ( R 0 > 2). This counterintuitive result means that increasing the intensity of control can result in more endemic infection.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Yu Kong ◽  
Tao Li ◽  
Yuanmei Wang ◽  
Xinming Cheng ◽  
He Wang ◽  
...  

AbstractNowadays, online gambling has a great negative impact on the society. In order to study the effect of people’s psychological factors, anti-gambling policy, and social network topology on online gambling dynamics, a new SHGD (susceptible–hesitator–gambler–disclaimer) online gambling spreading model is proposed on scale-free networks. The spreading dynamics of online gambling is studied. The basic reproductive number $R_{0}$ R 0 is got and analyzed. The basic reproductive number $R_{0}$ R 0 is related to anti-gambling policy and the network topology. Then, gambling-free equilibrium $E_{0}$ E 0 and gambling-prevailing equilibrium $E_{ +} $ E + are obtained. The global stability of $E_{0}$ E 0 is analyzed. The global attractivity of $E_{ +} $ E + and the persistence of online gambling phenomenon are studied. Finally, the theoretical results are verified by some simulations.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hamid Khataee ◽  
Istvan Scheuring ◽  
Andras Czirok ◽  
Zoltan Neufeld

AbstractA better understanding of how the COVID-19 pandemic responds to social distancing efforts is required for the control of future outbreaks and to calibrate partial lock-downs. We present quantitative relationships between key parameters characterizing the COVID-19 epidemiology and social distancing efforts of nine selected European countries. Epidemiological parameters were extracted from the number of daily deaths data, while mitigation efforts are estimated from mobile phone tracking data. The decrease of the basic reproductive number ($$R_0$$ R 0 ) as well as the duration of the initial exponential expansion phase of the epidemic strongly correlates with the magnitude of mobility reduction. Utilizing these relationships we decipher the relative impact of the timing and the extent of social distancing on the total death burden of the pandemic.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1164
Author(s):  
Weiwei Ling ◽  
Pinxia Wu ◽  
Xiumei Li ◽  
Liangjin Xie

By using differential equations with discontinuous right-hand sides, a dynamic model for vector-borne infectious disease under the discontinuous removal of infected trees was established after understanding the transmission mechanism of Huanglongbing (HLB) disease in citrus trees. Through calculation, the basic reproductive number of the model can be attained and the properties of the model are discussed. On this basis, the existence and global stability of the calculated equilibria are verified. Moreover, it was found that different I0 in the control strategy cannot change the dynamic properties of HLB disease. However, the lower the value of I0, the fewer HLB-infected citrus trees, which provides a theoretical basis for controlling HLB disease and reducing expenditure.


Nitrogen ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 308-320
Author(s):  
D. Nayeli Martínez ◽  
Edison A. Díaz-Álvarez ◽  
Erick de la Barrera

Environmental pollution is a major threat to public health and is the cause of important economic losses worldwide. Atmospheric nitrogen deposition is one of the most significant components of environmental pollution, which, in addition to being a health risk, is one of the leading drivers of global biodiversity loss. However, monitoring pollution is not possible in many regions of the world because the instrumentation, deployment, operation, and maintenance of automated systems is onerous. An affordable alternative is the use of biomonitors, naturally occurring or transplanted organisms that respond to environmental pollution with a consistent and measurable ecophysiological response. This policy brief advocates for the use of biomonitors of atmospheric nitrogen deposition. Descriptions of the biological and monitoring particularities of commonly utilized biomonitor lichens, bryophytes, vascular epiphytes, herbs, and woody plants, are followed by a discussion of the principal ecophysiological parameters that have been shown to respond to the different nitrogen emissions and their rate of deposition.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Bingyi Yang ◽  
Angkana T. Huang ◽  
Bernardo Garcia-Carreras ◽  
William E. Hart ◽  
Andrea Staid ◽  
...  

AbstractNon-pharmaceutical interventions (NPIs) remain the only widely available tool for controlling the ongoing SARS-CoV-2 pandemic. We estimated weekly values of the effective basic reproductive number (Reff) using a mechanistic metapopulation model and associated these with county-level characteristics and NPIs in the United States (US). Interventions that included school and leisure activities closure and nursing home visiting bans were all associated with a median Reff below 1 when combined with either stay at home orders (median Reff 0.97, 95% confidence interval (CI) 0.58–1.39) or face masks (median Reff 0.97, 95% CI 0.58–1.39). While direct causal effects of interventions remain unclear, our results suggest that relaxation of some NPIs will need to be counterbalanced by continuation and/or implementation of others.


Sign in / Sign up

Export Citation Format

Share Document