scholarly journals Regulation of axon repulsion by MAX-1 SUMOylation and AP-3

2018 ◽  
Vol 115 (35) ◽  
pp. E8236-E8245
Author(s):  
Shih-Yu Chen ◽  
Chun-Ta Ho ◽  
Wei-Wen Liu ◽  
Mark Lucanic ◽  
Hsiu-Ming Shih ◽  
...  

During neural development, growing axons express specific surface receptors in response to various environmental guidance cues. These axon guidance receptors are regulated through intracellular trafficking and degradation to enable navigating axons to reach their targets. In Caenorhabditis elegans, the UNC-5 receptor is necessary for dorsal migration of developing motor axons. We previously found that MAX-1 is required for UNC-5–mediated axon repulsion, but its mechanism of action remained unclear. Here, we demonstrate that UNC-5–mediated axon repulsion in C. elegans motor axons requires both max-1 SUMOylation and the AP-3 complex β subunit gene, apb-3. Genetic interaction studies show that max-1 is SUMOylated by gei-17/PIAS1 and acts upstream of apb-3. Biochemical analysis suggests that constitutive interaction of MAX-1 and UNC-5 receptor is weakened by MAX-1 SUMOylation and by the presence of APB-3, a competitive interactor with UNC-5. Overexpression of APB-3 reroutes the trafficking of UNC-5 receptor into the lysosome for protein degradation. In vivo fluorescence recovery after photobleaching experiments shows that MAX-1 SUMOylation and APB-3 are required for proper trafficking of UNC-5 receptor in the axon. Our results demonstrate that SUMOylation of MAX-1 plays an important role in regulating AP-3–mediated trafficking and degradation of UNC-5 receptors during axon guidance.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Marcello Germoglio ◽  
Anna Valenti ◽  
Ines Gallo ◽  
Chiara Forenza ◽  
Pamela Santonicola ◽  
...  

AbstractFanconi Anemia is a rare genetic disease associated with DNA repair defects, congenital abnormalities and infertility. Most of FA pathway is evolutionary conserved, allowing dissection and mechanistic studies in simpler model systems such as Caenorhabditis elegans. In the present study, we employed C. elegans to better understand the role of FA group D2 (FANCD2) protein in vivo, a key player in promoting genome stability. We report that localization of FCD-2/FANCD2 is dynamic during meiotic prophase I and requires its heterodimeric partner FNCI-1/FANCI. Strikingly, we found that FCD-2 recruitment depends on SPO-11-induced double-strand breaks (DSBs) but not RAD-51-mediated strand invasion. Furthermore, exposure to DNA damage-inducing agents boosts FCD-2 recruitment on the chromatin. Finally, analysis of genetic interaction between FCD-2 and BRC-1 (the C. elegans orthologue of mammalian BRCA1) supports a role for these proteins in different DSB repair pathways. Collectively, we showed a direct involvement of FCD-2 at DSBs and speculate on its function in driving meiotic DNA repair.


2016 ◽  
Vol 213 (2) ◽  
pp. 261-274 ◽  
Author(s):  
Russell E. McConnell ◽  
J. Edward van Veen ◽  
Marina Vidaki ◽  
Adam V. Kwiatkowski ◽  
Aaron S. Meyer ◽  
...  

Axons navigate long distances through complex 3D environments to interconnect the nervous system during development. Although the precise spatiotemporal effects of most axon guidance cues remain poorly characterized, a prevailing model posits that attractive guidance cues stimulate actin polymerization in neuronal growth cones whereas repulsive cues induce actin disassembly. Contrary to this model, we find that the repulsive guidance cue Slit stimulates the formation and elongation of actin-based filopodia from mouse dorsal root ganglion growth cones. Surprisingly, filopodia form and elongate toward sources of Slit, a response that we find is required for subsequent axonal repulsion away from Slit. Mechanistically, Slit evokes changes in filopodium dynamics by increasing direct binding of its receptor, Robo, to members of the actin-regulatory Ena/VASP family. Perturbing filopodium dynamics pharmacologically or genetically disrupts Slit-mediated repulsion and produces severe axon guidance defects in vivo. Thus, Slit locally stimulates directional filopodial extension, a process that is required for subsequent axonal repulsion downstream of the Robo receptor.


2016 ◽  
Author(s):  
Cristina Aguirre-Chen ◽  
Nuri Kim ◽  
Olivia Mendivil Ramos ◽  
Melissa Kramer ◽  
W. Richard McCombie ◽  
...  

AbstractOne of the primary challenges in the field of psychiatric genetics is the lack of an in vivo model system in which to functionally validate candidate neuropsychiatric risk genes (NRGs) in a rapid and cost-effective manner1−3. To overcome this obstacle, we performed a candidate-based RNAi screen in which C. elegans orthologs of human NRGs were assayed for dendritic arborization and cell specification defects using C. elegans PVD neurons. Of 66 NRGs, identified via exome sequencing of autism (ASD)4 or schizophrenia (SCZ)5−9 probands and whose mutations are de novo and predicted to result in a complete or partial loss of protein function, the C. elegans orthologs of 7 NRGs were found to be required for proper neuronal development and represent a variety of functional classes, including transcriptional regulators and chromatin remodelers, molecular chaperones, and cytoskeleton-related proteins. Notably, the positive hit rate, when selectively assaying C. elegans orthologs of ASD and SCZ NRGs, is enriched >14-fold as compared to unbiased RNAi screening10. Furthermore, we find that RNAi phenotypes associated with the depletion of NRG orthologs is recapitulated in genetic mutant animals, and, via genetic interaction studies, we show that the NRG ortholog of ANK2, unc-44, is required for SAX-7/MNR-1/DMA-1 signaling. Collectively, our studies demonstrate that C. elegans PVD neurons are a tractable model in which to discover and dissect the fundamental molecular mechanisms underlying neuropsychiatric disease pathogenesis.


2017 ◽  
Author(s):  
Mahekta Gujar ◽  
Aubrie M. Stricker ◽  
Erik A. Lundquist

AbstractThe guidance cue UNC-6/Netrin regulates both attractive and repulsive axon guidance. Our previous work showed that in C. elegans, the attractive UNC-6/Netrin receptor UNC-40/DCC stimulates growth cone protrusion, and that the repulsive receptor, an UNC-5/UNC-40 heterodimer, inhibits growth cone protrusion. We have also shown that inhibition of growth cone protrusion downstream of the UNC-5/UNC-40 repulsive receptor involves Rac GTPases, the Rac GTP exchange factor UNC-73/Trio, and the cytoskeletal regulator UNC-33/CRMP, which mediates Semaphorin-induced growth cone collapse in other systems. The multidomain flavoprotein monooxygenase (FMO) MICAL also mediates growth cone collapse in response to Semaphorin by directly oxidizing F-actin, resulting in depolymerization. The C. elegans genome does not encode a multidomain MICAL-like molecule, but does encode five flavin monooxygenases (FMO-1, -2, -3, -4, and 5) and another molecule, EHBP-1, similar to the non-FMO portion of MICAL.Here we show that FMO-1, FMO-4, FMO-5, and EHBP-1 may play a role in UNC-6/Netrin directed repulsive guidance mediated through UNC-40 and UNC-5 receptors. Mutations in fmo-1, fmo-4, fmo-5, and ehbp-1 showed VD/DD axon guidance and branching defects, and variably enhanced unc-40 and unc-5 VD/DD guidance defects. Developing growth cones in vivo of fmo-1, fmo-4, fmo-5, and ehbp-1 mutants displayed excessive filopodial protrusion, and transgenic expression of FMO-5 inhibited growth cone protrusion. Mutations suppressed growth cone inhibition caused by activated UNC-40 and UNC-5 signaling, and activated Rac GTPase CED-10 and MIG-2, suggesting that these molecules are required downstream of UNC-6/Netrin receptors and Rac GTPases. From these studies, we conclude that FMO-1, FMO-4, FMO-5, and EHBP-1 represent new players downstream of UNC-6/Netrin receptors and Rac GTPases that inhibit growth cone filopodial protrusion in repulsive axon guidance.Author SummaryMolecular mechanisms of axon repulsion mediated by UNC-6/Netrin are not well understood. Inhibition of growth cone lamellipodial and filopodial protrusion is critical to repulsive axon guidance. Previous work identified a novel pathway involving Rac GTPases and the cytoskeletal interacting molecule UNC-33/CRMP required for UNC-6/Netrin-mediated inhibition of growth cone protrusion. In other systems, CRMP mediates growth cone collapse in response to semaphorin. Here we demonstrate a novel role of flavoprotein monooxygenases (FMOs) in repulsive axon guidance and inhibition of growth cone protrusion downstream of UNC-6/Netrin signaling and Rac GTPases. In Drosophila and vertebrates, the multidomain MICAL FMO mediates semaphorin-dependent growth cone collapse by direct oxidation and depolymerization of F-actin. The C. elegans genome does not encode a multidomain MICAL-like molecule, and we speculate that the C. elegans FMOs might have an equivalent role downstream of UNC-6/Netrin signaling. Indeed, we show that EHBP-1, similar to the non-FMO portion of MICAL, also controls repulsive axon guidance and growth cone inhibition, suggesting that in C. elegans, the functions of the multidomain MICAL molecule might be distributed across different molecules. In sum, we show conservation of function of molecules involved in semaphorin growth cone collapse with inhibition of growth cone protrusion downstream of UNC-6/Netrin signaling.


Author(s):  
Haley E. Brown ◽  
Timothy A. Evans

AbstractThe Roundabout (Robo) family of axon guidance receptors has a conserved ectodomain arrangement of five immunoglobulin-like (Ig) domains plus three fibronectin (Fn) repeats. Based on the strong evolutionary conservation of this domain structure among Robo receptors, as well as in vitro structural and domain-domain interaction studies of Robo family members, this ectodomain arrangement is predicted to be important for Robo receptor signaling in response to Slit ligands. Here, we define the minimal ectodomain structure required for Slit binding and midline repulsive signaling in vivo by Drosophila Robo1. We find that the majority of the Robo1 ectodomain is dispensable for both Slit binding and repulsive signaling. We show that a significant level of midline repulsive signaling activity is retained when all Robo1 ectodomain elements apart from Ig1 are deleted, and that the combination of Ig1 plus one additional ectodomain element (Ig2, Ig5, or Fn3) is sufficient to restore midline repulsion to wild type levels. Further, we find that deleting four out of five Robo1 Ig domains (ΔIg2-5) does not affect negative regulation of Robo1 by Commissureless (Comm) or Robo2, while variants lacking all three fibronectin repeats (ΔFn1-3 and ΔIg2-Fn3) are insensitive to regulation by both Comm and Robo2, signifying a novel regulatory role for Robo1’s Fn repeats. Our results provide an in vivo perspective on the importance of the conserved 5+3 ectodomain structure of Robo receptors, and suggest that specific biochemical properties and/or ectodomain structural conformations observed in vitro for domains other than Ig1 may have limited significance for in vivo signaling in the context of midline repulsion.


2018 ◽  
Author(s):  
Jamie K. Alan ◽  
Sara Robinson ◽  
Katie Magsig ◽  
Rafael S. Demarco ◽  
Erik A. Lundquist

AbstractDuring development, neuronal cells extend an axon towards their target destination in response to a cue to form a properly functioning nervous system. Rho proteins, Ras-related small GTPases that regulate cytoskeletal organization and dynamics, cell adhesion, and motility, are known to regulate axon guidance. Despite extensive knowledge about canonical Rho proteins (RhoA/Rac1/Cdc42), little is known about the Caenorhabditis elegans (C. elegans) atypical Cdc42-like family members CHW-1 and CRP-1 in regards to axon pathfinding and neuronal migration. chw-1(Chp/Wrch) encodes a protein that resembles human Chp (Wrch-2/RhoV) and Wrch-1 (RhoU), and crp-1 encodes for a protein that resembles TC10 and TCL. Here, we show that chw-1 works redundantly with crp-1 and cdc-42 in axon guidance. Furthermore, proper levels of chw-1 expression and activity are required for proper axon guidance. When examining CHW-1 GTPase mutants, we found that the native CHW-1 protein is likely partially activated, and mutations at a conserved residue (position 12 using Ras numbering, position 18 in CHW-1) alter axon guidance and neural migration. Additionally, we showed that chw-1 genetically interacts with the guidance receptor sax-3 in PDE neurons. Finally, in VD/DD motor neurons, chw-1 works downstream of sax-3 to control axon guidance. In summary, this is the first study implicating the atypical Rho GTPases chw-1 and crp-1 in axon guidance. Furthermore, this is the first evidence of genetic interaction between chw-1 and the guidance receptor sax-3. These data suggest that chw-1 is likely acting downstream and/or in parallel to sax-3 in axon guidance.


2019 ◽  
Author(s):  
Mahekta R. Gujar ◽  
Aubrie M. Stricker ◽  
Erik A. Lundquist

AbstractUNC-6/Netrin is a conserved axon guidance cue that directs growth cone migrations in the dorsal-ventral axis of C. elegans and in the vertebrate spinal cord. UNC-6/Netrin is expressed in ventral cells, and growth cones migrate ventrally toward or dorsally away from UNC-6/Netrin. Recent studies of growth cone behavior during outgrowth in vivo in C. elegans have led to a polarity/protrusion model in directed growth cone migration away from UNC-6/Netrin. In this model, UNC-6/Netrin first polarizes the growth cone via the UNC-5 receptor, leading to dorsally biased protrusion and F-actin accumulation. UNC-6/Netrin then regulates protrusion based on this polarity. The receptor UNC-40/DCC drives protrusion dorsally, away from the UNC-6/Netrin source, and the UNC-5 receptor inhibits protrusion ventrally, near the UNC-6/Netrin source, resulting in dorsal migration. UNC-5 inhibits protrusion in part by excluding microtubules from the growth cone, which are pro-protrusive. Here we report that the RHO-1/RhoA GTPase and its activator GEF RHGF-1 inhibit growth cone protrusion and MT accumulation in growth cones, similar to UNC-5. However, growth cone polarity of protrusion and F-actin were unaffected by RHO-1 and RHGF-1. Thus, RHO-1 signaling acts specifically as a negative regulator of protrusion and MT accumulation, and not polarity. Genetic interactions suggest that RHO-1 and RHGF-1 act with UNC-5, as well as with a parallel pathway, to regulate protrusion. The cytoskeletal interacting molecule UNC-33/CRMP was required for RHO-1 activity to inhibit MT accumulation, suggesting that UNC-33/CRMP might act downstream of RHO-1. In sum, these studies describe a new role of RHO-1 and RHGF-1 in regulation of growth cone protrusion by UNC-6/Netrin.Author SummaryNeural circuits are formed by precise connections between axons. During axon formation, the growth cone leads the axon to its proper target in a process called axon guidance. Growth cone outgrowth involves asymmetric protrusion driven by extracellular cues that stimulate and inhibit protrusion. How guidance cues regulate growth cone protrusion in neural circuit formation is incompletely understood. This work shows that the signaling molecule RHO-1 acts downstream of the UNC-6/Netrin guidance cue to inhibit growth cone protrusion in part by excluding microtubules from the growth cone, which are structural elements that drive protrusion.


2021 ◽  
Author(s):  
LaFreda J. Howard ◽  
Marie C. Reichert ◽  
Timothy A. Evans

Drosophila Robo2 is a member of the evolutionarily conserved Roundabout (Robo) family of axon guidance receptors. The canonical role of Robo receptors is to signal midline repulsion in response to their cognate Slit ligands, which bind to the N-terminal Ig1 domain in most Robo family members. In the Drosophila embryonic ventral nerve cord, Robo1 and Robo2 cooperate to signal Slit-dependent midline repulsion, while Robo2 also regulates the medial-lateral position of longitudinal axon pathways and acts non-autonomously to promote midline crossing of commissural axons. Although it is clear that Robo2 signals midline repulsion in response to Slit, it is less clear whether Robo2's other activities are also Slit-dependent. To determine which of Robo2's axon guidance roles depend on its Slit-binding Ig1 domain, we have used a CRISPR/Cas9-based strategy replace the endogenous robo2 gene with a robo2 variant from which the Ig1 domain has been deleted (robo2ΔIg1). We compare the expression and localization of Robo2ΔIg1 protein with that of full-length Robo2 in embryonic neurons in vivo, and examine its ability to substitute for Robo2 to mediate midline repulsion and lateral axon pathway formation. We find that removal of the Ig1 domain from Robo2ΔIg1 disrupts both of these axon guidance activities. In addition, we find that the Ig1 domain of Robo2 is required for its proper subcellular localization in embryonic neurons, a role that is not shared by the Ig1 domain of Robo1. Finally, we report that although FasII-positive lateral axons are misguided in embryos expressing Robo2ΔIg1, the axons that normally express Robo2 are correctly guided to the lateral zone, suggesting that Robo2 may guide lateral longitudinal axons through a cell non-autonomous mechanism.


2008 ◽  
Vol 294 (1) ◽  
pp. F93-F99 ◽  
Author(s):  
Hassan Chaib ◽  
Bethan E. Hoskins ◽  
Shazia Ashraf ◽  
Meera Goyal ◽  
Roger C. Wiggins ◽  
...  

Steroid-resistant nephrotic syndrome is a malfunction of the kidney glomerular filter that leads to proteinuria, hypoalbuminemia, edema, and renal failure. Recently, we identified recessive mutations in the phospholipase C epsilon 1 gene ( PLCE1) as a new cause of early-onset nephrotic syndrome and demonstrated interaction of PLCε1 with IQGAP1. To further elucidate the mechanism by which PLCE1 mutations cause nephrotic syndrome, we sought to identify new protein interaction partners of PLCε1. We utilized information from the genetic interaction network of C. elegans. It relates the PLCE1 ortholog ( plc-1) to the C. elegans ortholog ( lin-45) of human BRAF ( v-raf murine sarcoma viral oncogene homolog B1). We hypothesized that this may indicate a functional protein-protein interaction. Using GST pull down of HEK293T cell lysates in vitro and coimmunoprecipation of mouse kidney lysates in vivo, we show that BRAF interacts with PLCε1. By immunohistochemistry in rat kidney, we demonstrate that both proteins are coexpressed and colocalize in developing and mature glomerular podocytes, reporting for the first time the expression of BRAF in the glomerular podocyte.


2016 ◽  
Vol 27 (17) ◽  
pp. 2675-2687 ◽  
Author(s):  
Lei Wang ◽  
Adam Johnson ◽  
Michael Hanna ◽  
Anjon Audhya

Clathrin coat assembly on membranes requires cytosolic adaptors and accessory proteins, which bridge triskeleons with the lipid bilayer and stabilize lattice architecture throughout the process of vesicle formation. In Caenorhabditis elegans, the prototypical AP-2 adaptor complex, which is activated by the accessory factor Fcho1 at the plasma membrane, is dispensable during embryogenesis, enabling us to define alternative mechanisms that facilitate clathrin-mediated endocytosis. Here we uncover a synthetic genetic interaction between C. elegans Fcho1 (FCHO-1) and Eps15 (EHS-1), suggesting that they function in a parallel and potentially redundant manner. Consistent with this idea, we find that the FCHO-1 EFC/F-BAR domain and the EHS-1 EH domains exhibit highly similar membrane-binding and -bending characteristics in vitro. Furthermore, we demonstrate a critical role for EHS-1 when FCHO-1 membrane-binding and -bending activity is specifically eliminated in vivo. Taken together, our data highlight Eps15 as an important membrane-remodeling factor, which acts in a partially redundant manner with Fcho proteins during the earliest stages of clathrin-mediated endocytosis.


Sign in / Sign up

Export Citation Format

Share Document