scholarly journals C. elegans PVD Neurons: A Platform for Functionally Validating and Characterizing Neuropsychiatric Risk Genes

2016 ◽  
Author(s):  
Cristina Aguirre-Chen ◽  
Nuri Kim ◽  
Olivia Mendivil Ramos ◽  
Melissa Kramer ◽  
W. Richard McCombie ◽  
...  

AbstractOne of the primary challenges in the field of psychiatric genetics is the lack of an in vivo model system in which to functionally validate candidate neuropsychiatric risk genes (NRGs) in a rapid and cost-effective manner1−3. To overcome this obstacle, we performed a candidate-based RNAi screen in which C. elegans orthologs of human NRGs were assayed for dendritic arborization and cell specification defects using C. elegans PVD neurons. Of 66 NRGs, identified via exome sequencing of autism (ASD)4 or schizophrenia (SCZ)5−9 probands and whose mutations are de novo and predicted to result in a complete or partial loss of protein function, the C. elegans orthologs of 7 NRGs were found to be required for proper neuronal development and represent a variety of functional classes, including transcriptional regulators and chromatin remodelers, molecular chaperones, and cytoskeleton-related proteins. Notably, the positive hit rate, when selectively assaying C. elegans orthologs of ASD and SCZ NRGs, is enriched >14-fold as compared to unbiased RNAi screening10. Furthermore, we find that RNAi phenotypes associated with the depletion of NRG orthologs is recapitulated in genetic mutant animals, and, via genetic interaction studies, we show that the NRG ortholog of ANK2, unc-44, is required for SAX-7/MNR-1/DMA-1 signaling. Collectively, our studies demonstrate that C. elegans PVD neurons are a tractable model in which to discover and dissect the fundamental molecular mechanisms underlying neuropsychiatric disease pathogenesis.

Genetics ◽  
2003 ◽  
Vol 165 (1) ◽  
pp. 159-169
Author(s):  
Benjamin Boettner ◽  
Phoebe Harjes ◽  
Satoshi Ishimaru ◽  
Michael Heke ◽  
Hong Qing Fan ◽  
...  

Abstract Rap1 belongs to the highly conserved Ras subfamily of small GTPases. In Drosophila, Rap1 plays a critical role in many different morphogenetic processes, but the molecular mechanisms executing its function are unknown. Here, we demonstrate that Canoe (Cno), the Drosophila homolog of mammalian junctional protein AF-6, acts as an effector of Rap1 in vivo. Cno binds to the activated form of Rap1 in a yeast two-hybrid assay, the two molecules colocalize to the adherens junction, and they display very similar phenotypes in embryonic dorsal closure (DC), a process that relies on the elongation and migration of epithelial cell sheets. Genetic interaction experiments show that Rap1 and Cno act in the same molecular pathway during DC and that the function of both molecules in DC depends on their ability to interact. We further show that Rap1 acts upstream of Cno, but that Rap1, unlike Cno, is not involved in the stimulation of JNK pathway activity, indicating that Cno has both a Rap1-dependent and a Rap1-independent function in the DC process.


2021 ◽  
pp. 1-9
Author(s):  
Dayana Torres Valladares ◽  
Sirisha Kudumala ◽  
Murad Hossain ◽  
Lucia Carvelli

Amphetamine is a potent psychostimulant also used to treat attention deficit/hyperactivity disorder and narcolepsy. In vivo and in vitro data have demonstrated that amphetamine increases the amount of extra synaptic dopamine by both inhibiting reuptake and promoting efflux of dopamine through the dopamine transporter. Previous studies have shown that chronic use of amphetamine causes tolerance to the drug. Thus, since the molecular mechanisms underlying tolerance to amphetamine are still unknown, an animal model to identify the neurochemical mechanisms associated with drug tolerance is greatly needed. Here we took advantage of a unique behavior caused by amphetamine in <i>Caenorhabditis elegans</i> to investigate whether this simple, but powerful, genetic model develops tolerance following repeated exposure to amphetamine. We found that at least 3 treatments with 0.5 mM amphetamine were necessary to see a reduction in the amphetamine-induced behavior and, thus, to promote tolerance. Moreover, we found that, after intervals of 60/90 minutes between treatments, animals were more likely to exhibit tolerance than animals that underwent 10-minute intervals between treatments. Taken together, our results show that <i>C. elegans</i> is a suitable system to study tolerance to drugs of abuse such as amphetamines.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Liangbin Zeng ◽  
Airong Shen ◽  
Jia Chen ◽  
Zhun Yan ◽  
Touming Liu ◽  
...  

The ramie mothCocytodes coeruleaGuenée (RM) is an economically important pest that seriously impairs the yield of ramie, an important natural fiber crop. The molecular mechanisms that underlie the ramie-pest interactions are unclear up to date. Therefore, a transcriptome profiling analysis would aid in understanding the ramie defense mechanisms against RM. In this study, we first constructed two cDNA libraries derived from RM-challenged (CH) and unchallenged (CK) ramie leaves. The subsequent sequencing of the CH and CK libraries yielded 40.2 and 62.8 million reads, respectively. Furthermore,de novoassembling of these reads generated 26,759 and 29,988 unigenes, respectively. An integrated assembly of data from these two libraries resulted in 46,533 unigenes, with an average length of 845 bp per unigene. Among these genes, 24,327 (52.28%) were functionally annotated by predicted protein function. A comparative analysis of the CK and CH transcriptome profiles revealed 1,980 differentially expressed genes (DEGs), of which 750 were upregulated and 1,230 were downregulated. A quantitative real-time PCR (qRT-PCR) analysis of 13 random selected genes confirmed the gene expression patterns that were determined by Illumina sequencing. Among the DEGs, the expression patterns of transcription factors, protease inhibitors, and antioxidant enzymes were studied. Overall, these results provide useful insights into the defense mechanism of ramie against RM.


2018 ◽  
Vol 115 (35) ◽  
pp. E8236-E8245
Author(s):  
Shih-Yu Chen ◽  
Chun-Ta Ho ◽  
Wei-Wen Liu ◽  
Mark Lucanic ◽  
Hsiu-Ming Shih ◽  
...  

During neural development, growing axons express specific surface receptors in response to various environmental guidance cues. These axon guidance receptors are regulated through intracellular trafficking and degradation to enable navigating axons to reach their targets. In Caenorhabditis elegans, the UNC-5 receptor is necessary for dorsal migration of developing motor axons. We previously found that MAX-1 is required for UNC-5–mediated axon repulsion, but its mechanism of action remained unclear. Here, we demonstrate that UNC-5–mediated axon repulsion in C. elegans motor axons requires both max-1 SUMOylation and the AP-3 complex β subunit gene, apb-3. Genetic interaction studies show that max-1 is SUMOylated by gei-17/PIAS1 and acts upstream of apb-3. Biochemical analysis suggests that constitutive interaction of MAX-1 and UNC-5 receptor is weakened by MAX-1 SUMOylation and by the presence of APB-3, a competitive interactor with UNC-5. Overexpression of APB-3 reroutes the trafficking of UNC-5 receptor into the lysosome for protein degradation. In vivo fluorescence recovery after photobleaching experiments shows that MAX-1 SUMOylation and APB-3 are required for proper trafficking of UNC-5 receptor in the axon. Our results demonstrate that SUMOylation of MAX-1 plays an important role in regulating AP-3–mediated trafficking and degradation of UNC-5 receptors during axon guidance.


2002 ◽  
Vol 115 (5) ◽  
pp. 923-929 ◽  
Author(s):  
Yosef Gruenbaum ◽  
Kenneth K. Lee ◽  
Jun Liu ◽  
Merav Cohen ◽  
Katherine L. Wilson

Emerin belongs to the LEM-domain family of nuclear membrane proteins, which are conserved in metazoans from C. elegans to humans. Loss of emerin in humans causes the X-linked form of Emery-Dreifuss muscular dystrophy(EDMD), but the disease mechanism is not understood. We have begun to address the function of emerin in C. elegans, a genetically tractable nematode. The emerin gene (emr-1) is conserved in C. elegans. We detect Ce-emerin protein in the nuclear envelopes of all cell types except sperm, and find that Ce-emerin co-immunoprecipitates with Ce-lamin from embryo lysates. We show for the first time in any organism that nuclear lamins are essential for the nuclear envelope localization of emerin during early development. We further show that four other types of nuclear envelope proteins, including fellow LEM-domain protein Ce-MAN1, as well as Ce-lamin, UNC-84 and nucleoporins do not depend on Ce-emerin for their localization. This result suggests that emerin is not essential to organize or localize the only lamin (B-type) expressed in C. elegans. We also analyzed the RNAi phenotype resulting from the loss of emerin function in C. elegans under laboratory growth conditions, and found no detectable phenotype throughout development. We propose that C. elegans is an appropriate system in which to study the molecular mechanisms of emerin function in vivo.


Blood ◽  
2002 ◽  
Vol 100 (4) ◽  
pp. 1326-1333 ◽  
Author(s):  
Yuichi Oike ◽  
Yasuhiro Ito ◽  
Koichi Hamada ◽  
Xiu-Qin Zhang ◽  
Keishi Miyata ◽  
...  

Although the cellular and molecular mechanisms governing angiogenesis are only beginning to be understood, signaling through endothelial-restricted receptors, particularly receptor tyrosine kinases, has been shown to play a pivotal role in these events. Recent reports show that EphB receptor tyrosine kinases and their transmembrane-type ephrin-B2 ligands play essential roles in the embryonic vasculature. These studies suggest that cell-to-cell repellent effects due to bidirectional EphB/ephrin-B2 signaling may be crucial for vascular development, similar to the mechanism described for neuronal development. To test this hypothesis, we disrupted the precise expression pattern of EphB/ephrin-B2 in vivo by generating transgenic (CAGp-ephrin-B2 Tg) mice that express ephrin-B2 under the control of a ubiquitous and constitutive promoter, CMV enhancer-β-actin promoter-β-globin splicing acceptor (CAG). These mice displayed an abnormal segmental arrangement of intersomitic vessels, while such anomalies were not observed in Tie-2p-ephrin-B2 Tg mice in which ephrin-B2 was overexpressed in only vascular endothelial cells (ECs). This finding suggests that non-ECs expressing ephrin-B2 alter the migration of ECs expressing EphB receptors into the intersomitic region where ephrin-B2 expression is normally absent. CAGp-ephrin-B2 Tg mice show sudden death at neonatal stages from aortic dissecting aneurysms due to defective recruitment of vascular smooth muscle cells to the ascending aorta. EphB/ephrin-B2 signaling between endothelial cells and surrounding mesenchymal cells plays an essential role in vasculogenesis, angiogenesis, and vessel maturation.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Marcello Germoglio ◽  
Anna Valenti ◽  
Ines Gallo ◽  
Chiara Forenza ◽  
Pamela Santonicola ◽  
...  

AbstractFanconi Anemia is a rare genetic disease associated with DNA repair defects, congenital abnormalities and infertility. Most of FA pathway is evolutionary conserved, allowing dissection and mechanistic studies in simpler model systems such as Caenorhabditis elegans. In the present study, we employed C. elegans to better understand the role of FA group D2 (FANCD2) protein in vivo, a key player in promoting genome stability. We report that localization of FCD-2/FANCD2 is dynamic during meiotic prophase I and requires its heterodimeric partner FNCI-1/FANCI. Strikingly, we found that FCD-2 recruitment depends on SPO-11-induced double-strand breaks (DSBs) but not RAD-51-mediated strand invasion. Furthermore, exposure to DNA damage-inducing agents boosts FCD-2 recruitment on the chromatin. Finally, analysis of genetic interaction between FCD-2 and BRC-1 (the C. elegans orthologue of mammalian BRCA1) supports a role for these proteins in different DSB repair pathways. Collectively, we showed a direct involvement of FCD-2 at DSBs and speculate on its function in driving meiotic DNA repair.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Kentaro Noma ◽  
Alexandr Goncharov ◽  
Mark H Ellisman ◽  
Yishi Jin

Subcellular localization of ribosomes defines the location and capacity for protein synthesis. Methods for in vivo visualizing ribosomes in multicellular organisms are desirable in mechanistic investigations of the cell biology of ribosome dynamics. Here, we developed an approach using split GFP for tissue-specific visualization of ribosomes in Caenorhabditis elegans. Labeled ribosomes are detected as fluorescent puncta in the axons and synaptic terminals of specific neuron types, correlating with ribosome distribution at the ultrastructural level. We found that axonal ribosomes change localization during neuronal development and after axonal injury. By examining mutants affecting axonal trafficking and performing a forward genetic screen, we showed that the microtubule cytoskeleton and the JIP3 protein UNC-16 exert distinct effects on localization of axonal and somatic ribosomes. Our data demonstrate the utility of tissue-specific visualization of ribosomes in vivo, and provide insight into the mechanisms of active regulation of ribosome localization in neurons.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Kathrin Theil ◽  
Koshi Imami ◽  
Nikolaus Rajewsky

Abstract Understanding regulation of an mRNA requires knowledge of its regulators. However, methods for reliable de-novo identification of proteins binding to a particular RNA are scarce and were thus far only successfully applied to abundant noncoding RNAs in cell culture. Here, we present vIPR, an RNA-protein crosslink, RNA pulldown, and shotgun proteomics approach to identify proteins bound to selected mRNAs in C. elegans. Applying vIPR to the germline-specific transcript gld-1 led to enrichment of known and novel interactors. By comparing enrichment upon gld-1 and lin-41 pulldown, we demonstrate that vIPR recovers both common and specific RNA-binding proteins, and we validate DAZ-1 as a specific gld-1 regulator. Finally, combining vIPR with small RNA sequencing, we recover known and biologically important transcript-specific miRNA interactions, and we identify miR-84 as a specific interactor of the gld-1 transcript. We envision that vIPR will provide a platform for investigating RNA in vivo regulation in diverse biological systems.


2018 ◽  
Author(s):  
Wisath Sae-Lee ◽  
Luisa L. Scott ◽  
Aliyah J. Encarnacion ◽  
Pragati Kore ◽  
Lashaun O. Oyibo ◽  
...  

AbstractGenetic and epidemiological studies have found that variations in the amyloid precursor protein (APP) and the apoliopoprotein E (APOE) genes represent major modifiers of the progressive neurodegeneration in Alzheimer’s disease (AD). An extra copy or gain-of-function mutations in APP lower age of AD onset. Compared to the other isoforms (APOE3 and APOE2), the ε4 allele of APOE (APOE4) hastens and exacerbates early and late onset forms of AD. Convenient in vivo models to study how APP and APOE4 interact at the cellular and molecular level to influence neurodegeneration are lacking. Here, we show that the nematode C. elegans can model important aspects of AD including age-related, patterned neurodegeneration that is exacerbated by APOE4. Specifically, we found that APOE4, but not APOE3, acts with APP to hasten and expand the pattern of cholinergic neurodegeneration caused by APP. Molecular mechanisms underlying how APP and APOE4 synergize to kill some neurons while leaving others unaffected may be uncovered using this convenient worm model of neurodegeneration.


Sign in / Sign up

Export Citation Format

Share Document