scholarly journals Different roles of E proteins in t(8;21) leukemia: E2-2 compromises the function of AETFC and negatively regulates leukemogenesis

2018 ◽  
Vol 116 (3) ◽  
pp. 890-899 ◽  
Author(s):  
Na Liu ◽  
Junhong Song ◽  
Yangyang Xie ◽  
Xiao-Lin Wang ◽  
Bowen Rong ◽  
...  

The AML1-ETO fusion protein, generated by the t(8;21) chromosomal translocation, is causally involved in nearly 20% of acute myeloid leukemia (AML) cases. In leukemic cells, AML1-ETO resides in and functions through a stable protein complex, AML1-ETO–containing transcription factor complex (AETFC), that contains multiple transcription (co)factors. Among these AETFC components, HEB and E2A, two members of the ubiquitously expressed E proteins, directly interact with AML1-ETO, confer new DNA-binding capacity to AETFC, and are essential for leukemogenesis. However, the third E protein, E2-2, is specifically silenced in AML1-ETO–expressing leukemic cells, suggesting E2-2 as a negative factor of leukemogenesis. Indeed, ectopic expression of E2-2 selectively inhibits the growth of AML1-ETO–expressing leukemic cells, and this inhibition requires the bHLH DNA-binding domain. RNA-seq and ChIP-seq analyses reveal that, despite some overlap, the three E proteins differentially regulate many target genes. In particular, studies show that E2-2 both redistributes AETFC to, and activates, some genes associated with dendritic cell differentiation and represses MYC target genes. In AML patients, the expression of E2-2 is relatively lower in the t(8;21) subtype, and an E2-2 target gene, THPO, is identified as a potential predictor of relapse. In a mouse model of human t(8;21) leukemia, E2-2 suppression accelerates leukemogenesis. Taken together, these results reveal that, in contrast to HEB and E2A, which facilitate AML1-ETO–mediated leukemogenesis, E2-2 compromises the function of AETFC and negatively regulates leukemogenesis. The three E proteins thus define a heterogeneity of AETFC, which improves our understanding of the precise mechanism of leukemogenesis and assists development of diagnostic/therapeutic strategies.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 5247-5247
Author(s):  
Na Liu ◽  
Junhong Song ◽  
Yangyang Xie ◽  
Xiao-Lin Wang ◽  
Bowen Rong ◽  
...  

Abstract The leukemogenic AML1-ETO fusion protein is produced by the t(8;21) translocation, which is one of the most common chromosomal abnormalities in acute myeloid leukemia (AML). In leukemic cells, AML1-ETO resides in and functions through a stable protein complex, AETFC, that contains multiple transcription factors and cofactors. Among these AETFC components, E2A (also known as TCF3) and HEB (also known as TCF12), two members of the ubiquitously expressed E proteins, directly interact with AML1-ETO, confer new DNA (E-box) binding capacity to AETFC, and are functionally essential for leukemogenesis. However, we find that the third E protein, E2-2 (also known as TCF4), is specifically silenced in AML1-ETO-expressing leukemic cells, suggesting E2-2 as a negative factor of leukemogenesis. Indeed, ectopic expression of E2-2 selectively inhibits the growth of AML1-ETO-expressing leukemic cells, and this inhibition requires the basic helix-loop-helix (bHLH) DNA-binding domain of E2-2. Gene expression profiling and ChIP-seq analysis reveal that, despite some overlap, the three E proteins differentially regulate many target genes. In particular, consistent with the fact that E2-2 is a critical transcription factor in dendritic cell (DC) development, our studies show that E2-2 both redistributes AETFC to, and activates, some genes associated with DC differentiation, and that restoration of E2-2 triggers a partial differentiation of the AML1-ETO-expressing leukemic cells into the DC lineage. Meanwhile, E2-2, but not E2A or HEB, represses MYC target genes, which may also contribute to leukemic cell differentiation and apoptosis. In AML patients, the expression of E2-2 is relatively lower in the t(8;21) subtype, and an E2-2 target gene, THPO, is identified as a potential predictor of relapse. In a mouse model of human t(8;21) leukemia, E2-2 suppression accelerates the development of leukemia. Taken together, these results reveal that, in contrast to HEB and E2A, which facilitate AML1-ETO-mediated leukemogenesis, E2-2 compromises the function of AETFC and negatively regulates leukemogenesis. The three E proteins thus define a molecular heterogeneity of AETFC, which merits further study in different t(8;21) AML patients, as well as in its potential regulation of cellular heterogeneity of AML. These studies should improve our understanding of the precise mechanism of leukemogenesis and assist development of diagnostic and therapeutic strategies. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5085-5085
Author(s):  
Qingxiao Chen ◽  
Jingsong He ◽  
Xing Guo ◽  
Jing Chen ◽  
Xuanru Lin ◽  
...  

Abstract Background: Acute myeloid leukemia (AML) is the most common form of acute leukemia in adults which is still incurable although novel drugs and new combination of chemotherapies are used . With the development of genetic and molecular biology technologies, more and more genes are found to be related to leukemogenesis and drug resistance of AML. TET2, a member of the ten-eleven-translocation gene family which can modify DNA by catalyzing the conversion of 5-mehtyl-cytosine to 5-hydroxymethyl-cytosine , is often inactivated through mutation or deletion in myeloid malignancies. Recent research reported that TET2 knock-down can promote proliferation of hematopoietic stem cells and leukemic cells. Also, several clinical studies showed that patients with TET2 mutation or low levels of TET2 expression have more aggressive disease courses than those with normal levels of TET2. However, the mechanism of the phenomenon is unknown. Our aim is to uncover how TET2 protein level is negatively correlated with AML cell proliferation and to provide a better view of target therapy in AML. Methods: We determined the expression levels of TET2 and other target genes in acute leukemia cell lines, bone marrow AML specimens, and peripheral blood mononuclear cells from healthy donors by qRT-PCR and Western blot. We also determined the mutation status of TET2 in AML cell lines. CCK8 and flow cytometry were used to determine cell proliferation, cell apoptosis, and cell cycle profile. Methylation-specific PCR were used to examine the methylation status in gene promoter regions. Also, we developed TET2 knock-down lentivirus to transfect AML cell lines to examine the effect of TET2 depletion. Last, RNA-seq was used to compare gene expression level changes between TET2 knock-down cell lines and the control cell lines. Results: AML cells from AML cell lines (KG-1,U937, Kasumi, HL-60, THP-1, and MV4-11) and AML patients' specimens expressed lower levels of TET2 than those of PBMC from the healthy donor (P<0.05). Among AML cell lines, U937 barely expressed TET2, while KG-1 expressed TET2 at a relatively higher level than those of other AML cell lines. We constructed a TET2 shRNA to transfect KG-1,THP-1,MV-4-11,Kasumi,and HL-60, and used qRT-PCR and western blot to verify the knock-down efficiency. CCK8 confirmed that knocking down TET2 could increase leukemia cell proliferation (P<0.05). Flow cytometry showed that cell cycle profile was altered in TET2 knock-down cells compared to the negative control cells. In order to identify target genes, we performed RNA-seq on wildtype and TET2 knockdown KG-1 cells and found that the expression of cell cycle related genes, DNA replication related genes, and some oncogenes were changed. We focused on Pim-1, an oncogene related to leukemogenesis, which was significantly up-regulated in the RNA-seq profile. Western blot and qPCR verified the RNA-seq results of Pim-1 expression in the transfected cells . Also, AML patients' bone marrow samples (n=35) were tested by qPCR and 28 of them were found to express low TET2 but high Pim-1 with the other 7 being opposite. For detailed exploration in expression regulation of Pim-1 via TET2, we screened genes affecting Pim-1 expression and found SHP-1, a tumor suppress gene which is often silenced by promoter methylation in AML. Western blot band of SHP-1 was attenuated in TET2 knockdown KG-1 cells. Moreover, methylation-specific PCR showed that after knocking down TET2 in KG-1 cell line, the promoter regions were methylated much more than the control cells. These results indicated that the function of TET2 in epigenetic modulation plays an important role in regulating Pim-1 expression. Finally, using flow cytometry and CCK8 we surprisingly found that knocking down TET2 expression could lead leukemic cells (KG-1, THP-1 and MV-4-11) more sensitive to Pim-1 inhibitor (SGI-1776 free base) and decitabine (a demethylation agent treating MDS and AML) (P<0.05). Conclusion: Our study showed that knocking down TET2 promoted leukemic cell proliferation. This phenomenon may correlate to Pim-1 up-regulation. Our clinical data also showed that the expression of TET2 and Pim-1 have an inverse relationship. The mechanism of TET2 regulating Pim-1 expression may be related to the epigenetic modulation function of TET2. Finally, we found TET2 downregulation could increase leukemia vulnerability to Pim-1 inhibitor and decitbine, and provide a novel view of target therapy in AML. Disclosures No relevant conflicts of interest to declare.


Development ◽  
1996 ◽  
Vol 122 (9) ◽  
pp. 2709-2718 ◽  
Author(s):  
P. Miskiewicz ◽  
D. Morrissey ◽  
Y. Lan ◽  
L. Raj ◽  
S. Kessler ◽  
...  

Drosophila paired, a homolog of mammalian Pax-3, is key to the coordinated regulation of segment-polarity genes during embryogenesis. The paired gene and its homologs are unusual in encoding proteins with two DNA-binding domains, a paired domain and a homeodomain. We are using an in vivo assay to dissect the functions of the domains of this type of molecule. In particular, we are interested in determining whether one or both DNA-binding activities are required for individual in vivo functions of Paired. We constructed point mutants in each domain designed to disrupt DNA binding and tested the mutants with ectopic expression assays in Drosophila embryos. Mutations in either domain abolished the normal regulation of the target genes engrailed, hedgehog, gooseberry and even-skipped, suggesting that these in vivo functions of Paired require DNA binding through both domains rather than either domain alone. However, when the two mutant proteins were placed in the same embryo, Paired function was restored, indicating that the two DNA-binding activities need not be present in the same molecule. Quantitation of this effect shows that the paired domain mutant has a dominant-negative effect consistent with the observations that Paired protein can bind DNA as a dimer.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 236-236
Author(s):  
Mathieu Tremblay ◽  
Sabine Herblot ◽  
Marianne Desrosiers ◽  
Margarita Todorova ◽  
Eric Paquet ◽  
...  

Abstract The SCL and LMO oncogenes are frequently activated in childhood T cell acute leukemia (T-ALL). SCL is a transcription factor of the basic helix-loop-helix (bHLH) family that forms heterodimers with other members of the family, specifically HEB and E2A. SCL can activate or repress transcription but the mechanism through which SCL functions as an oncogene remains to be clarified. Ectopic expression of SCL and LMO in the thymus of transgenic mice causes thymocyte differentiation arrest during the preleukemic phase with aberrant differentiation at the DN3-DN4 stage, prior to the acquisition of CD4 and CD8. We therefore took several approaches to define the mechanism underlying differentiation arrest in these cells. We first analyzed global gene expression of pre-leukemic DN3 thymocytes from SCLtg/LMOtg mice against their wild type littermates. We found that in this context, these oncogenes act as global transcriptional repressor as 90% of the genes with more than two fold differences are repressed when compared to wild type controls. Furthermore, we identify the HEB/E2A pathway as being targeted by SCL/LMO and used different approaches to show that the HEB/E2A activity is repressed by these oncogenes. First, using real-time quantitative PCR, we confirmed the repression of known HEB/E2A target genes (pTa and Rag1/2). In addition, we identified new HEB/E2A target genes that were confirmed as direct target through chromatin immunoprecipitation of primary thymocytes. This array also reveals that SCL associates with HEB and/or E2A on DNA to repress their function. Furthermore, we took a genetic approach to show that SCL/LMO collaborates with HEB haploinsufficiency in inducing leukemia. Our observations therefore reveal that the repression of the HEB pathway is crucial for T cell transformation. The importance of this repression is underscored by the fact that the E2A/HEB target genes that we identify here are expressed at low levels in primary leukemic cells from T-ALL patients when compared to B-ALL or AML samples. Together, these results show that SCL/LMO repress HEB/E2A activity to block T cell differentiation, an important step for T cell leukemia.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1414-1414
Author(s):  
Kyle M. Draheim ◽  
Kimberly Erdkamp ◽  
Eward Arous ◽  
Jennifer A. Calvo ◽  
Michelle A. Kelliher

Abstract LMO2 is a member of the “LIM only” protein family and required for primitive erythropoiesis and adult vasculogenesis and angiogenesis. In erythroid cells, LMO2 interacts with TAL1 and E47 and LDB1 and GATA-1, thereby forming a transcriptional complex whose target genes include EKLF, CKIT, and p4.2 (protein 4.2). LMO2 was first implicated in leukemogenesis when it was identified in chromosomal translocations t(11;14)(p13;q11) and t(7;11)(q35;p13) found in T cell acute lymphoblastic leukemia (T-ALL) patients. Ectopic expression of LMO2 in mice recapitulates the human disease, albeit at low penetrance and following a long latency. LMO2 has been shown to synergize with TAL1, yet the mechanism of oncogene cooperativity is unknown. Two models have been proposed: the first suggests that LMO2 and TAL1 synergize by forming an active transcriptional complex that induces expression of target genes such as retinaldehyde dehydrogenase 2 (RALDH2) and TALLA1 (a surface marker of T-ALL). The second model proposes that LMO2 and TAL1 sequester the E47/HEB heterodimer, resulting in inhibition of E47/HEB-mediated transcription. To distinguish between these models, we mated our Tal1 transgenic mice and our DNA binding mutant of Tal1(R188G:R189G) with Lmo2 transgenic mice. As expected, transgenic expression of Lmo2 induced disease in 23% of mice after 302 days. Similar to published studies, Tal1 and Lmo2 expression dramatically inhibited thymocyte development and induced T cell leukemia in 100% of the mice with a mean latency of 108 days. To test whether the DNA binding properties of tal1 were required to cooperate with LMO2, we mated mice expressing a DNA binding mutant of Tal1(R188G;R189G) with Lmo2 transgenic mice and found that tumors were induced with similar kinetics; 100% of mice developed disease with an average latency of 107 days. These data suggest LMO2 does not require the DNA-binding properties of Tal1 to induce leukemia in mice and support the model that LMO2 contributes to leukemia through E47/HEB sequestration and inhibition.


1997 ◽  
Vol 17 (3) ◽  
pp. 1503-1512 ◽  
Author(s):  
X Fu ◽  
M P Kamps

The E2a-Pbx1 oncoprotein contains the transactivation domain of E2a joined to the DNA-binding homeodomain (HD) of Pbx1. In mice, E2a-Pbx1 transforms T lymphoblasts and fibroblasts and blocks myeloblast differentiation. Pbx1 and E2a-Pbx1 bind DNA as heterodimers with other HD proteins whose expression is tissue specific. While the transactivation domain of E2a is required for all forms of transformation, DNA binding by the Pbx1 HD is essential for blocking myeloblast differentiation but dispensable for fibroblast or T-lymphoblast transformation. These properties suggest (i) that E2a-Pbx1 causes cellular transformation by activating gene transcription, (ii) that transcription of E2a-Pbx1 target genes is normally regulated by ubiquitous Pbx proteins and tissue-specific partners, and (iii) that DNA-binding mutants of E2a-Pbx1 activate a subset of all gene targets. To test these predictions, genes induced in NIH 3T3 fibroblasts by E2a-Pbx1 were identified and examined for tissue- and stage-specific expression and their differential abilities to be upregulated by E2a-Pbx1 in NIH 3T3 fibroblasts and myeloblasts and by a DNA-binding mutant of E2a-Pbx1 in NIH 3T3 cells. Of 12 RNAs induced by E2a-Pbx1, 4 encoded known proteins (a J-C region of the immunoglobulin kappa light chain, natriuretic peptide receptor C, mitochondrial fumarase, and the 3',5'-cyclic nucleotide phosphodiesterase, PDE1A) and 5 encoded new proteins related to angiogenin, ion channels, villin, epidermal growth factor repeat proteins, and the human 2.19 gene product. Expression of many of these genes was tissue specific or developmentally regulated, and most were not expressed in fibroblasts, indicating that E2a-Pbx1 can induce ectopic expression of genes associated with lineage-specific differentiation.


Development ◽  
1993 ◽  
Vol 118 (2) ◽  
pp. 339-352 ◽  
Author(s):  
W. Zeng ◽  
D.J. Andrew ◽  
L.D. Mathies ◽  
M.A. Horner ◽  
M.P. Scott

The transcription factors encoded by homeotic genes determine cell fates during development. Each homeotic protein causes cells to follow a distinct pathway, presumably by differentially regulating downstream ‘target’ genes. The homeodomain, the DNA-binding part of homeotic proteins, is necessary for conferring the specificity of each homeotic protein's action. The two Drosophila homeotic proteins encoded by Antennapedia and Sex combs reduced determine cell fates in the epidermis and internal tissues of the posterior head and thorax. Genes encoding chimeric Antp/Scr proteins were introduced into flies and their effects on morphology and target gene regulation observed. We find that the N terminus of the homeodomain is critical for determining the specific effects of these homeotic proteins in vivo, but other parts of the proteins have some influence as well. The N-terminal part of the homeodomain has been observed, in crystal structures and in NMR studies in solution, to contact the minor groove of the DNA. The different effects of Antennapedia and Sex combs reduced proteins in vivo may depend on differences in DNA binding, protein-protein interactions, or both.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 743-743
Author(s):  
Sake van Wageningen ◽  
Marleen C. Breems-de Ridder ◽  
Gorica Nikoloski ◽  
Claudia A.J. Erpelinck-Verschueren ◽  
Jeannet Nigten ◽  
...  

Abstract PML-RARa is the product of the chromosomal translocation t(15;17) and is the causative oncogene in more than 98% of the cases of acute promyelocytic leukemia. PML-RARa interferes with the transcription of retinoic acid receptor target genes in a dominant manner, contributing to the transformation of the cells. RARa regulates transcription via heterodimerisation with RXR. PML-RARa can bind as a homodimer to the same sequences as RARa/RXR. At supra-physiological dosis of all-trans retionoic acid (ATRA), the block in differentiation in APL can be overcome. ATRA releases co-repressors from PML-RARa and activates RARa target genes. The ID1 gene is rapidly induced by ATRA in acute promyelocytic leukemia cells. Promoter analysis showed that the ID1 promoter was activated by PML-RARa but, unexpectedly, not by wild type RARa/RXR. Surprisingly, PML-RARa lacking the DNA binding domain could still transactivate the ID1 promoter indicating that transactivation was mediated without direct DNA binding. Promoter deletion studies showed that adjacent NF-Y and SP1 binding sites were essential for this transactivation. A direct physical interaction was shown between PML-RARa and SP1 in vitro and chromatin immunoprecepitation assays confirmed that a complex of PML-RARa/NF-Y/Sp1 is present on the ID1 promoter in vivo. In addition, we found that ectopic expression of PML-RARa induced expression of the endogenous ID1 gene in response to retinoic acid. We propose a novel, gain-of-function model for PML-RARa in which the fusion protein interferes with the transcription of SP1-NF-Y regulated genes. Interference is mediated without DNA-binding, through direct interaction with SP1. This implicates that apart from the previously described deregulation of retinoic acid receptor target genes, PML-RARa may deregulate an additional class of genes that are nomally not regulated by retinoid receptors.


2021 ◽  
Author(s):  
Laura Kind ◽  
Arne Raasakka ◽  
Janne Molnes ◽  
Ingvild Aukrust ◽  
Lise Bjørkhaug ◽  
...  

Hepatocyte nuclear factor 1A (HNF-1A) is a transcription factor expressed in several embryonic and adult tissues, modulating expression of numerous target genes. Pathogenic variants in the HNF1A gene cause maturity-onset diabetes of the young 3 (MODY3 or HNF1A MODY), characterized by dominant inheritance, age of onset before 25-35 years of age, and pancreatic β-cell dysfunction. A precise diagnosis alters management as insulin can be exchanged with sulfonylurea tablets and genetic counselling differs from polygenic forms of diabetes. More knowledge on mechanisms of HNF-1A function and the level of pathogenicity of the numerous HNF1A variants identified by exome sequencing is required for precise diagnostics. Here, we have structurally and biophysically characterized an HNF-1A protein containing both the DNA binding domain and the dimerization domain. We also present a novel approach to characterize HNF-1A variants. The folding and DNA binding capacity of two established MODY3 HNF-1A variant proteins (P112L, R263C) and one variant of unknown significance (N266S) were determined. All three variants showed reduced functionality compared to the wild-type protein. While the R263C and N266S variants displayed reduced binding to an HNF-1A target promoter, the P112L variant was unstable in vitro and in cells. Our results support and mechanistically explain disease causality for all investigated variants and allow for the dissection of structurally unstable and DNA binding defective variants. This points towards structural and biochemical investigation of HNF-1A being a valuable aid in reliable variant classification needed for precision diagnostics and management.


2017 ◽  
Author(s):  
Matthew J. Bush ◽  
Govind Chandra ◽  
Mahmoud M. Al-Bassam ◽  
Kim C. Findlay ◽  
Mark J. Buttner

ABSTRACTStreptomycetes are filamentous bacteria that differentiate by producing spore-bearing reproductive structures called aerial hyphae. The transition from vegetative to reproductive growth is controlled by the bld (bald) loci, and mutations in bld genes prevent the formation of aerial hyphae, either by blocking entry into development (typically mutations in activators) or by inducing precocious sporulation in the vegetative mycelium (typically mutations in repressors). One of the bld genes, bldC, encodes a 68-residue DNA-binding protein related to the DNA-binding domain of MerR-family transcription factors. Recent work has shown that BldC binds DNA by a novel mechanism, but there is less insight into its impact on Streptomyces development. Here we used ChIP-seq coupled with RNA-seq to define the BldC regulon in the model species Streptomyces venezuelae, showing that BldC can function both as a repressor and as an activator of transcription. Using electron microscopy and time-lapse imaging, we show that bldC mutants are bald because they initiate development prematurely, bypassing the formation of aerial hyphae. This is consistent with the premature expression of BldC target genes encoding proteins with key roles in development (e.g. whiD, whiI, sigF), chromosome condensation and segregation (e.g. smeA-sffA, hupS), and sporulation-specific cell division (e.g. dynAB), suggesting that BldC-mediated repression is critical to maintain a sustained period of vegetative growth prior to sporulation. We discuss the possible significance of BldC as an evolutionary link between MerR family transcription factors and DNA architectural proteins.IMPORTANCEUnderstanding the mechanisms that drive bacterial morphogenesis depends on the dissection of the regulatory networks that underpin the cell biological processes involved. Recently, Streptomyces venezuelae has emerged as an attractive new model system for the study of morphological differentiation in Streptomyces. This has led to significant progress in identifying the genes controlled by the transcription factors that regulate aerial mycelium formation (Bld regulators) and sporulation (Whi regulators). Taking advantage of S. venezuelae, we used ChIP-seq coupled with RNA-seq to identify the genes directly under the control of BldC. Because S. venezuelae sporulates in liquid culture, the complete spore-to-spore life cycle can be examined using time-lapse microscopy, and we applied this technique to the bldC mutant. These combined approaches reveal BldC to be a member of an emerging class of Bld regulators that function principally to repress key sporulation genes, thereby extending vegetative growth and blocking the onset of morphological differentiation.


Sign in / Sign up

Export Citation Format

Share Document