scholarly journals The IκB-protein BCL-3 controls Toll-like receptor-induced MAPK activity by promoting TPL-2 degradation in the nucleus

2019 ◽  
Vol 116 (51) ◽  
pp. 25828-25838 ◽  
Author(s):  
Patricia E. Collins ◽  
Domenico Somma ◽  
David Kerrigan ◽  
Felicity Herrington ◽  
Karen Keeshan ◽  
...  

Proinflammatory responses induced by Toll-like receptors (TLRs) are dependent on the activation of the NF-ĸB and mitogen-activated protein kinase (MAPK) pathways, which coordinate the transcription and synthesis of proinflammatory cytokines. We demonstrate that BCL-3, a nuclear IĸB protein that regulates NF-ĸB, also controls TLR-induced MAPK activity by regulating the stability of the TPL-2 kinase. TPL-2 is essential for MAPK activation by TLR ligands, and the rapid proteasomal degradation of active TPL-2 is a critical mechanism limiting TLR-induced MAPK activity. We reveal that TPL-2 is a nucleocytoplasmic shuttling protein and identify the nucleus as the primary site for TPL-2 degradation. BCL-3 interacts with TPL-2 and promotes its degradation by promoting its nuclear localization. As a consequence,Bcl3−/−macrophages have increased TPL-2 stability following TLR stimulation, leading to increased MAPK activity and MAPK-dependent responses. Moreover, BCL-3–mediated regulation of TPL-2 stability sets the MAPK activation threshold and determines the amount of TLR ligand required to initiate the production of inflammatory cytokines. Thus, the nucleus is a key site in the regulation of TLR-induced MAPK activity. BCL-3 links control of the MAPK and NF-ĸB pathways in the nucleus, and BCL-3–mediated TPL-2 regulation impacts on the cellular decision to initiate proinflammatory cytokine production in response to TLR activation.

1999 ◽  
Vol 19 (4) ◽  
pp. 2763-2772 ◽  
Author(s):  
Francesc Viñals ◽  
Jacques Pouysségur

ABSTRACT Like other cellular models, endothelial cells in cultures stop growing when they reach confluence, even in the presence of growth factors. In this work, we have studied the effect of cellular contact on the activation of p42/p44 mitogen-activated protein kinase (MAPK) by growth factors in mouse vascular endothelial cells. p42/p44 MAPK activation by fetal calf serum or fibroblast growth factor was restrained in confluent cells in comparison with the activity found in sparse cells. Consequently, the induction of c-fos, MAPK phosphatases 1 and 2 (MKP1/2), and cyclin D1 was also restrained in confluent cells. In contrast, the activation of Ras and MEK-1, two upstream activators of the p42/p44 MAPK cascade, was not impaired when cells attained confluence. Sodium orthovanadate, but not okadaic acid, restored p42/p44 MAPK activity in confluent cells. Moreover, lysates from confluent 1G11 cells more effectively inactivated a dually phosphorylated active p42 MAPK than lysates from sparse cells. These results, together with the fact that vanadate-sensitive phosphatase activity was higher in confluent cells, suggest that phosphatases play a role in the down-regulation of p42/p44 MAPK activity. Enforced long-term activation of p42/p44 MAPK by expression of the chimera ΔRaf-1:ER, which activates the p42/p44 MAPK cascade at the level of Raf, enhanced the expression of MKP1/2 and cyclin D1 and, more importantly, restored the reentry of confluent cells into the cell cycle. Therefore, inhibition of p42/p44 MAPK activation by cell-cell contact is a critical step initiating cell cycle exit in vascular endothelial cells.


2007 ◽  
Vol 75 (12) ◽  
pp. 5985-5992 ◽  
Author(s):  
Zhe Zhang ◽  
William Reenstra ◽  
Daniel J. Weiner ◽  
Jean-Pierre Louboutin ◽  
James M. Wilson

ABSTRACT In this study, we show that stimulation of human airway epithelial cells (HAECs) by Pseudomonas aeruginosa strain PAO1 induces time- and dose-dependent activation of p38 mitogen-activated protein kinase (MAPK). Activated p38 MAPK stayed in the cytoplasm instead of translocating to the nucleus, as shown by cellular fractionation. p38 MAPK was activated when HAECs were incubated with P. aeruginosa strain PAK and Burkholderia cepacia, while little activation was observed with the isogenic flagellin-free strains PAK/fliC and B. cepacia BC/fliC. The presence of Toll-like receptor 5 (TLR5) in 293 cells mediated PAO1-dependent activation of p38 MAPK, and in HAECs p38 MAPK activation was blocked by the overexpression of a dominant negative TLR5. Two inhibitors of p38 MAPK, SB202190 and SB203580, significantly attenuated PAO1-dependent expression of an NF-κB-dependent luciferase reporter gene, suggesting that p38 MAPK activation is required for full activation of NF-κB-dependent signaling. Microarray analysis of NF-κB target genes revealed up-regulation of multiple genes by PAO1 in HAECs. Reverse transcription-PCR and protein expression analysis were used to show that up-regulation of NF-κB-dependent genes induced by PAO1, such as the genes encoding Cox-2 and interleukin-8, was attenuated by SB203580. These results demonstrate a role for p38 MAPK signaling in gene regulation in response to P. aeruginosa via TLR5.


2011 ◽  
Vol 286 (22) ◽  
pp. 19605-19616 ◽  
Author(s):  
Debra J. Taxman ◽  
Elizabeth A. Holley-Guthrie ◽  
Max Tze-Han Huang ◽  
Chris B. Moore ◽  
Daniel T. Bergstralh ◽  
...  

ASC/PYCARD is a common adaptor for a diverse set of inflammasomes that activate caspase-1, most prominently the NLR-based inflammasome. Mounting evidence indicates that ASC and these NLRs also elicit non-overlapping functions, but the molecular basis for this difference is unclear. To address this, we performed microarray and network analysis of ASC shRNA knockdown cells. In pathogen-infected cells, an ASC-dependent interactome is centered on the mitogen-activated protein kinase (MAPK) ERK and on multiple chemokines. ASC did not affect the expression of MAPK but affected its phosphorylation by pathogens and Toll-like receptor agonists via suppression of the dual-specificity phosphatase, DUSP10/MKP5. Chemokine induction, DUSP function, and MAPK phosphorylation were independent of caspase-1 and IL-1β. MAPK activation by pathogen was abrogated in Asc−/− but not Nlrp3−/−, Nlrc4−/−, or Casp1−/− macrophages. These results demonstrate a function for ASC that is distinct from the inflammasome in modulating MAPK activity and chemokine expression and further identify DUSP10 as a novel ASC target.


2001 ◽  
Vol 280 (1) ◽  
pp. C183-C191 ◽  
Author(s):  
Jason A. Lehman ◽  
Cassandra C. Paul ◽  
Michael A. Baumann ◽  
Julian Gómez-Cambronero

Mitogen-activated protein kinase (MAPK) isoform p42 is known to be active in exponentially growing cells at several points of the cell cycle. A high basal activity was present in three cell lines representative of immature myeloid cells tested: uHL-60, AML-14, and MPD. However, DMSO-induced differentiation of HL-60 cells (dHL-60) and subsequent expression of the neutrophilic phenotype occurred with a concomitant reduction on the basal level of MAPK activity. Simultaneously, extracellular stimuli like the cytokine granulocyte/macrophage colony-stimulating factor (GM-CSF) induced a fast (<10 min) and robust response. In terms of MAPK activity, the more mature the cell was, the higher the corresponding activity, in the three differentiation series considered: AML-14 < 3D10; MPD < G-MPD; uHL-60 < dHL-60 < neutrophils. Interestingly, peripheral blood neutrophils expressed the highest (16-fold) MAPK activation level in response to GM-CSF. Finally, using the specific MAPK inhibitor PD-98059, we demonstrated that MAPK activation is needed for neutrophil chemotaxis toward interleukin-8 and its priming by GM-CSF. Since neutrophils are terminally differentiated cells, GM-CSF does not serve a purpose in proliferation, and it must trigger the recruitment of selective signal transduction pathways particular to that final stage that includes enhanced physiological functions such as chemotaxis.


2012 ◽  
Vol 447 (1) ◽  
pp. 159-166 ◽  
Author(s):  
Madhurima Saha ◽  
Audrey Carriere ◽  
Mujeeburahiman Cheerathodi ◽  
Xiaocui Zhang ◽  
Geneviève Lavoie ◽  
...  

The extent and duration of MAPK (mitogen-activated protein kinase) signalling govern a diversity of normal and aberrant cellular outcomes. Genetic and pharmacological disruption of the MAPK-activated kinase RSK (ribosomal S6 kinase) leads to elevated MAPK activity indicative of a RSK-dependent negative feedback loop. Using biochemical, pharmacological and quantitative MS approaches we show that RSK phosphorylates the Ras activator SOS1 (Son of Sevenless homologue 1) in cultured cells on two C-terminal residues, Ser1134 and Ser1161. Furthermore, we find that RSK-dependent SOS1 phosphorylation creates 14-3-3-binding sites. We show that mutating Ser1134 and Ser1161 disrupts 14-3-3 binding and modestly increases and extends MAPK activation. Together these data suggest that one mechanism whereby RSK negatively regulates MAPK activation is via site-specific SOS1 phosphorylation.


2010 ◽  
Vol 30 (17) ◽  
pp. 4293-4307 ◽  
Author(s):  
Raymond E. Chen ◽  
Jesse C. Patterson ◽  
Louise S. Goupil ◽  
Jeremy Thorner

ABSTRACT Cellular responses to many external stimuli are mediated by mitogen-activated protein kinases (MAPKs). We investigated whether dynamic intracellular movement contributes to the spatial and temporal characteristics of the responses elicited by a prototypic MAPK, Fus3, in the mating pheromone response pathway in budding yeast (Saccharomyces cerevisiae). Confining Fus3 in the nucleus, via fusion to a histone H2B, reduced MAPK activation and diminished all responses (pheromone-induced gene expression, cell cycle arrest, projection formation, and mating). Elimination of MAPK phosphatases restored more robust outputs for all responses, indicating that nuclear sequestration impedes full MAPK activation but does not abrogate its functional competence. Restricting Fus3 to the plasma membrane, via fusion to a lipid-modified CCaaX motif, led to MAPK hyperactivation yet severely impaired all response outputs. Fus3-CCaaX also caused aberrant cell morphology and a proliferation defect. Unlike similar phenotypes induced by pathway hyperactivation via upstream components, these deleterious effects were independent of the downstream transcription factor Ste12. Thus, appropriate cellular responses require free subcellular MAPK transit to disseminate MAPK activity optimally because preventing dynamic MAPK movement either markedly impaired signal-dependent activation and/or resulted in improper biological outputs.


2004 ◽  
Vol 53 (12) ◽  
pp. 1187-1193 ◽  
Author(s):  
Iana H Haralambieva ◽  
Ianko D Iankov ◽  
Petya V Ivanova ◽  
Vanio Mitev ◽  
Ivan G Mitov

Chlamydophila pneumoniae, an obligately intracellular Gram-negative bacterium and a common causative agent of respiratory tract infections, has been implicated in the induction and progression of atherosclerosis and coronary artery disease. In this study, the signalling mechanism of C. pneumoniae in human fibroblasts, a prominent cell population in chronic inflammation and persistent infection, contributing to plaque formation, was investigated. C. pneumoniae elementary bodies were demonstrated to up-regulate the phosphorylation of p44/p42 mitogen-activated protein kinase (MAPK) in human fibroblasts. The effect was independent of the chlamydial lipopolysaccharide and was likely to be mediated by a heat-labile chlamydial protein. Furthermore, an anti-Toll-like receptor 4 (TLR4) antibody was shown to abolish C. pneumoniae-induced cell activation, whereas an anti-TLR2 antibody had no effect, indicating the role of TLR4 in p44/p42 MAPK activation. Ca2+/calmodulin-dependent protein kinase inhibitor KN-62 and phosphodiesterase 4 (PDE 4) inhibitor Rolipram enhanced C. pneumoniae-induced MAPK phosphorylation and attenuated C. pneumoniae infectivity in vitro. Together the results indicate that C. pneumoniae triggers rapid TLR4-mediated p44/p42 MAPK activation in human fibroblasts and chemical enhancement of MAPK phosphorylation modulates in vitro infection at the molecular level.


2009 ◽  
Vol 20 (3) ◽  
pp. 1020-1029 ◽  
Author(s):  
Wei Zuo ◽  
Ye-Guang Chen

Transforming growth factor (TGF)-β regulates a spectrum of cellular events, including cell proliferation, differentiation, and migration. In addition to the canonical Smad pathway, TGF-β can also activate mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/Akt, and small GTPases in a cell-specific manner. Here, we report that cholesterol depletion interfered with TGF-β–induced epithelial-mesenchymal transition (EMT) and cell migration. This interference is due to impaired activation of MAPK mediated by cholesterol-rich lipid rafts. Cholesterol-depleting agents specifically inhibited TGF-β–induced activation of extracellular signal-regulated kinase (ERK) and p38, but not Smad2/3 or Akt. Activation of ERK or p38 is required for both TGF-β–induced EMT and cell migration, whereas PI3K/Akt is necessary only for TGF-β–promoted cell migration but not for EMT. Although receptor heterocomplexes could be formed in both lipid raft and nonraft membrane compartments in response to TGF-β, receptor localization in lipid rafts, but not in clathrin-coated pits, is important for TGF-β–induced MAPK activation. Requirement of lipid rafts for MAPK activation was further confirmed by specific targeting of the intracellular domain of TGF-β type I receptor to different membrane locations. Together, our findings establish a novel link between cholesterol and EMT and cell migration, that is, cholesterol-rich lipid rafts are required for TGF-β–mediated MAPK activation, an event necessary for TGF-β–directed epithelial plasticity.


1994 ◽  
Vol 267 (4) ◽  
pp. C1130-C1135 ◽  
Author(s):  
Y. Wang ◽  
P. M. Rose ◽  
M. L. Webb ◽  
M. J. Dunn

Endothelin (ET) has been shown to activate mitogen-activated protein kinase (MAPK). However, it has been unclear which of the ET receptors is coupled to MAPK activation. In the present study, we conducted experiments to determine which ET receptor is linked to MAPK activation. We found that both human ETA and ETB were coupled to the MAPK cascade in ETA or ETB cDNA-transfected Chinese hamster ovary cells. ET-1 was more potent than ET-3 in the activation of p42 MAPK, induction of MAPK kinase (MAPKK) gel retardation and uptake of [3H]thymidine in ETA-transfected cells, whereas sarafotoxin (S6c) showed no stimulatory effect on the kinases and [3H]thymidine uptake. ET-1, ET-3, and S6c had approximately the same potency to activate p42 MAPK, MAPKK gel retardation, and [3H]thymidine uptake in ETB-transfected cells. These data suggest that 1) ET isopeptides, through either ETA or ETB receptors, induce the MAPK cascade as well as cell proliferation; and 2) the different potencies of ET isopeptides for activation of the MAPK cascade and induction of cell growth are mainly due to their different affinities toward ETA and ETB.


2008 ◽  
Vol 294 (3) ◽  
pp. C754-C764 ◽  
Author(s):  
Takashi Kawasaki ◽  
Mashkoor A. Choudhry ◽  
Martin G. Schwacha ◽  
Satoshi Fujimi ◽  
James A. Lederer ◽  
...  

Although splenic dendritic cell (DC) functions are markedly altered following trauma-hemorrhage, the mechanism(s) responsible for the altered DC functions remains unknown. We hypothesized that trauma-hemorrhage inhibits DC function via suppressing toll-like receptor 4 (TLR4) expression and mitogen-activated protein kinases (MAPKs). To examine this, male C3H/HeN (6–8 wk) mice were randomly assigned to sham operation or trauma-hemorrhage. Trauma-hemorrhage was induced by midline laparotomy and ∼90 min of hypotension [blood pressure (BP) 35 mmHg], followed by fluid resuscitation (4× the shed blood volume in the form of Ringer lactate). Two hours later, mice were euthanized, splenic DCs were isolated, and the changes in their MAPK activation, TLR4-MD-2 expression, and ability to produce cytokines were measured. The results indicate that trauma-hemorrhage downregulated the lipopolysaccharide (LPS)-induced MAPK activation in splenic DCs. In addition to the decrease in MAPK activation, surface expression of TLR4-MD-2 was suppressed following trauma-hemorrhage. Furthermore, LPS-induced cytokine production from splenic DCs was also suppressed following trauma-hemorrhage. These findings thus suggest that the decrease in TLR4-MD-2 and MAPK activation may contribute to the LPS hyporesponsiveness of splenic DCs following trauma-hemorrhage. Hyporesponsiveness of splenic DCs was also found after stimulation with the TLR2 agonist zymosan. Our results may thus explain the profound immunosuppression that is known to occur under those conditions.


Sign in / Sign up

Export Citation Format

Share Document