scholarly journals Vapor isotopic evidence for the worsening of winter air quality by anthropogenic combustion-derived water

2020 ◽  
Vol 117 (52) ◽  
pp. 33005-33010
Author(s):  
Meng Xing ◽  
Weiguo Liu ◽  
Xia Li ◽  
Weijian Zhou ◽  
Qiyuan Wang ◽  
...  

Anthropogenic combustion-derived water (CDW) may accumulate in an airshed due to stagnant air, which may further enhance the formation of secondary aerosols and worsen air quality. Here we collected three-winter-season, hourly resolution, water-vapor stable H and O isotope compositions together with atmospheric physical and chemical data from the city of Xi’an, located in the Guanzhong Basin (GZB) in northwestern China, to elucidate the role of CDW in particulate pollution. Based on our experimentally determined water vapor isotope composition of the CDW for individual and weighted fuels in the basin, we found that CDW constitutes 6.2% of the atmospheric moisture on average and its fraction is positively correlated with [PM2.5] (concentration of particulate matter with an aerodynamic diameter less than 2.5 μm) as well as relative humidity during the periods of rising [PM2.5]. Our modeling results showed that CDW added additional average 4.6 μg m−3 PM2.5 during severely polluted conditions in the GZB, which corresponded to an average 5.1% of local anthropogenic [PM2.5] (average at ∼91.0 μg m−3). Our result is consistent with the proposed positive feedback between the relative humidity and a moisture sensitive air-pollution condition, alerting to the nontrivial role of CDW when considering change of energy structure such as a massive coal-to-gas switch in household heating in winter.

MAUSAM ◽  
2022 ◽  
Vol 52 (4) ◽  
pp. 717-726
Author(s):  
U. S. DE ◽  
G. S. PRAKASA RAO ◽  
A. K. JASWAL

Visibility plays a key role at the time of landing and take off operations at airports. The daily visibility data from 1969 onwards for 25 stations in the country (at 2100, 0000, 0300 and 0600 UTC) are examined for the winter period. Side by side the dry bulb temperatures and the relative humidity recorded at the same time are also examined. Linear trend regressions have been fitted on the data sets for each of the cities. The significance is tested at 99% level of confidence.   In recent years, degradation of air quality in the cities has often been suggested as the cause for the increase in the number of poor visibility days <2000 meters) particularly in the morning hours. Continuous persistence of this phenomenon for a number of days has also been reported.   The results show that there are decreasing trends in visibility at most of the stations. At 0300 UTC the visibility is generally low and increased afterwards due to mixing and turbulence in the boundary layer.


RSC Advances ◽  
2017 ◽  
Vol 7 (68) ◽  
pp. 42718-42724 ◽  
Author(s):  
Zhantao Wang ◽  
Fuxi Shi ◽  
Cunlu Zhao

The role of relative humidity (RH) on the wetting behavior of droplets of two [Rmim][NTf2] ionic liquids (ILs) on a mica surface was investigated and water vapor adsorption was found to enhance the ILs precursor film formation and droplet spreading.


2014 ◽  
Vol 22 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Andrzej Żyromski ◽  
Małgorzata Biniak-Pieróg ◽  
Ewa Burszta-Adamiak ◽  
Zenon Zamiar

Abstract The paper presents the evaluation of the relation between meteorological elements and air pollutants’ concentrations. The analysis includes daily concentrations of pollutants and variation of meteorological elements such as wind speed, air temperature and relative humidity, precipitation and total radiation at four monitoring stations located in the province of Lower Silesia in individual months of the winter half-year (November–April, according to hydrological year classification) of 2005–2009. Data on air quality and meteorological elements came from the results of research conducted in the automatic net of air pollution monitoring conducted in the range of the State Environment Monitoring. The effect of meteorological elements on analysed pollutant concentration was determined using the correlation and regression analysis at significance level α < 0.05. The occurrence of maximum concentration of NO, NO2, NOX, SO2 and PM10 occurred in the coldest months during winter season (January, February and December) confirmed the strong influence of “low emission” on air quality. Among the meteorological factors assessed wind speed was most often selected component in step wise regression procedure, then air temperature, less air relative humidity and solar radiation. In the case of a larger number of variables describing the pollution in the atmosphere, in all analyzed winter seasons the most common set of meteorological elements were wind speed and air temperature.


2017 ◽  
Author(s):  
Anne Alexandre ◽  
Amarelle Landais ◽  
Christine Vallet-Coulomb ◽  
Clément Piel ◽  
Sébastien Devidal ◽  
...  

Abstract. Continental atmospheric relative humidity (RH) is a key climate-parameter. Combined with atmospheric temperature, it allows us to estimate the concentration of atmospheric water vapor which is one of the main components of the global water cycle and the most important gas contributing to the natural greenhouse effect. However, there is a lack of proxies suitable for reconstructing, in a quantitative way, past changes of continental atmospheric humidity. This reduces the possibility to make model-data comparisons necessary for the implementation of climate models. Over the past 10 years, analytical developments have enabled a few laboratories to reach sufficient precision for measuring the triple oxygen isotopes, expressed by the 17O-excess (17O-excess = ln (δ17O + 1) − 0.528 × ln (δ18O + 1)), in water, water vapor and minerals. The 17O-excess represents an alternative to deuterium-excess for investigating relative humidity conditions that prevail during water evaporation. Phytoliths are micrometric amorphous silica particles that form continuously in living plants. Phytolith morphological assemblages from soils and sediments are commonly used as past vegetation and hydrous stress indicators. In the present study, we examine whether changes in atmospheric RH imprint the 17O-excess of phytoliths in a measurable way and whether this imprint offers a potential for reconstructing past RH. For that purpose, we first monitored the 17O-excess evolution of soil water, grass leaf water and grass phytoliths in response to changes in RH (from 40 to 100 %) in a growth chamber experiment where transpiration reached a steady state. Decreasing RH decreases the 17O-excess of phytoliths by 4.1 per meg / % as a result of kinetic fractionation of the leaf water subject to evaporation. In order to model with accuracy the triple oxygen isotope fractionation in play in plant water and in phytoliths we recommend direct and continuous measurements of the triple isotope composition of water vapor. Then, we measured the 17O-excess of 57 phytolith assemblages collected from top soils along a RH and vegetation transect in inter-tropical West and Central Africa. Although scattered, the 17O-excess of phytoliths decreases with RH by 3.4 per meg / %. The similarity of the trends observed in the growth chamber and nature supports that RH is an important control of 17O-excess of phytoliths in the natural environment. However, other parameters such as changes in the triple isotope composition of the soil water or phytolith origin in the leaf tissue may come into play. Assessment of these parameters through additional growth chambers experiments and field campaigns will bring us closer to an accurate proxy of changes in relative humidity.


Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1351
Author(s):  
Jadwiga Nidzgorska-Lencewicz ◽  
Małgorzata Czarnecka

Studies on air quality frequently adopt clustering, in particular the k-means technique, owing to its simplicity, ease of implementation and efficiency. The aim of the present paper was the assessment of air quality in a winter season (December–February) in the conditions of temperature inversion using the k-means method, representing a non-hierarchical algorithm of cluster analysis. The air quality was assessed on the basis of the concentrations of particulate matter (PM10, PM2.5). The studies were conducted in four winter seasons (2015/16, 2016/17, 2017/18, 2019/20) in Wrocław (Poland). As a result of the application of the v-fold cross test, six clusters for each fraction of PM were identified. Even though the analysis covers only four winter seasons, the applied method has unequivocally revealed that the characteristics of surface-based (SBI) and elevated inversions (ELI) affect the concentration level of both fractions of particulate matter. In the case of PM10, the average lowest daily concentration (15.5 µg·m−3) was recorded in the conditions of approx. 205 m in thickness, 0.5 °C intensity of the SBI and at the height of the base of the ELI at approx. 1700 m a.g.l., a thickness of 148 m and an intensity of 1.2 °C. In turn, the average highest concentration (136 µg·m−3) was recorded at a thickness of SBI of approx. 400 m and an intensity of 1.4 °C. Such high concentration occurred when the lowest location of ELI formed at 764 m a.g.l. with a thickness of 308 m and an intensity of 0.96 °C. A marked role of the thickness of the SBI and ELI as well as the height of the base of the lowest location of ELI was also manifested with respect to PM2.5 concentrations.


2018 ◽  
Vol 15 (10) ◽  
pp. 3223-3241 ◽  
Author(s):  
Anne Alexandre ◽  
Amarelle Landais ◽  
Christine Vallet-Coulomb ◽  
Clément Piel ◽  
Sébastien Devidal ◽  
...  

Abstract. Continental atmospheric relative humidity (RH) is a key climate parameter. Combined with atmospheric temperature, it allows us to estimate the concentration of atmospheric water vapor, which is one of the main components of the global water cycle and the most important gas contributing to the natural greenhouse effect. However, there is a lack of proxies suitable for reconstructing, in a quantitative way, past changes of continental atmospheric humidity. This reduces the possibility of making model–data comparisons necessary for the implementation of climate models. Over the past 10 years, analytical developments have enabled a few laboratories to reach sufficient precision for measuring the triple oxygen isotopes, expressed by the 17O-excess (17O-excess = ln (δ17O + 1) – 0.528 × ln (δ18O + 1)), in water, water vapor and minerals. The 17O-excess represents an alternative to deuterium-excess for investigating relative humidity conditions that prevail during water evaporation. Phytoliths are micrometric amorphous silica particles that form continuously in living plants. Phytolith morphological assemblages from soils and sediments are commonly used as past vegetation and hydrous stress indicators. In the present study, we examine whether changes in atmospheric RH imprint the 17O-excess of phytoliths in a measurable way and whether this imprint offers a potential for reconstructing past RH. For that purpose, we first monitored the 17O-excess evolution of soil water, grass leaf water and grass phytoliths in response to changes in RH (from 40 to 100 %) in a growth chamber experiment where transpiration reached a steady state. Decreasing RH from 80 to 40 % decreases the 17O-excess of phytoliths by 4.1 per meg/% as a result of kinetic fractionation of the leaf water subject to evaporation. In order to model with accuracy the triple oxygen isotope fractionation in play in plant water and in phytoliths we recommend direct and continuous measurements of the triple isotope composition of water vapor. Then, we measured the 17O-excess of 57 phytolith assemblages collected from top soils along a RH and vegetation transect in inter-tropical West and Central Africa. Although scattered, the 17O-excess of phytoliths decreases with RH by 3.4 per meg/%. The similarity of the trends observed in the growth chamber and nature supports that RH is an important control of 17O-excess of phytoliths in the natural environment. However, other parameters such as changes in the triple isotope composition of the soil water or phytolith origin in the plant may come into play. Assessment of these parameters through additional growth chambers experiments and field campaigns will bring us closer to an accurate proxy of changes in relative humidity.


2016 ◽  
Vol 20 (suppl. 1) ◽  
pp. 297-307 ◽  
Author(s):  
Ivan Lazovic ◽  
Zarko Stevanovic ◽  
Milena Jovasevic-Stojanovic ◽  
Marija Zivkovic ◽  
Milos Banjac

Previous studies have shown that poorly ventilated classrooms can have negative impact on the health of children and school staff. In most cases, schools in Serbia are ventilated naturally. Considering their high occupancy, classroom air quality test determines the level of air pollution, after which it is possible to implement corrective measures. The research presented in this study was conducted in four schools which are located in different areas and have different architecture designs. Measurements in these schools have been performed during the winter (heating season) and spring (non-heating season) and the following results were presented: indoor air temperature, relative humidity and carbon dioxide concentration. These results show that the classroom average concentration of carbon dioxide often exceeds the value of 1500 ppm, during its full occupancy, which indicates inadequate ventilation. Measurement campaigns show that carbon dioxide concentration increased significantly from non-heating to heating season in three of the four schools. Analysis of measurements also determined high correlation between relative humidity and carbon dioxide concentration in all schools in winter season. This fact may constitute a solid basis for the fresh air supply strategy.


2018 ◽  
Vol 99 (5) ◽  
pp. 955-973 ◽  
Author(s):  
J.-P. Vernier ◽  
T. D. Fairlie ◽  
T. Deshler ◽  
M. Venkat Ratnam ◽  
H. Gadhavi ◽  
...  

AbstractWe describe and show results from a series of field campaigns that used balloonborne instruments launched from India and Saudi Arabia during the summers 2014–17 to study the nature, formation, and impacts of the Asian Tropopause Aerosol Layer (ATAL). The campaign goals were to i) characterize the optical, physical, and chemical properties of the ATAL; ii) assess its impacts on water vapor and ozone; and iii) understand the role of convection in its formation. To address these objectives, we launched 68 balloons from four locations, one in Saudi Arabia and three in India, with payload weights ranging from 1.5 to 50 kg. We measured meteorological parameters; ozone; water vapor; and aerosol backscatter, concentration, volatility, and composition in the upper troposphere and lower stratosphere (UTLS) region. We found peaks in aerosol concentrations of up to 25 cm–3 for radii > 94 nm, associated with a scattering ratio at 940 nm of ∼1.9 near the cold-point tropopause. During medium-duration balloon flights near the tropopause, we collected aerosols and found, after offline ion chromatography analysis, the dominant presence of nitrate ions with a concentration of about 100 ng m–3. Deep convection was found to influence aerosol loadings 1 km above the cold-point tropopause. The Balloon Measurements of the Asian Tropopause Aerosol Layer (BATAL) project will continue for the next 3–4 years, and the results gathered will be used to formulate a future National Aeronautics and Space Administration–Indian Space Research Organisation (NASA–ISRO) airborne campaign with NASA high-altitude aircraft.


2021 ◽  
Vol 13 (11) ◽  
pp. 2179
Author(s):  
Pedro Mateus ◽  
Virgílio B. Mendes ◽  
Sandra M. Plecha

The neutral atmospheric delay is one of the major error sources in Space Geodesy techniques such as Global Navigation Satellite Systems (GNSS), and its modeling for high accuracy applications can be challenging. Improving the modeling of the atmospheric delays (hydrostatic and non-hydrostatic) also leads to a more accurate and precise precipitable water vapor estimation (PWV), mostly in real-time applications, where models play an important role, since numerical weather prediction models cannot be used for real-time processing or forecasting. This study developed an improved version of the Hourly Global Pressure and Temperature (HGPT) model, the HGPT2. It is based on 20 years of ERA5 reanalysis data at full spatial (0.25° × 0.25°) and temporal resolution (1-h). Apart from surface air temperature, surface pressure, zenith hydrostatic delay, and weighted mean temperature, the updated model also provides information regarding the relative humidity, zenith non-hydrostatic delay, and precipitable water vapor. The HGPT2 is based on the time-segmentation concept and uses the annual, semi-annual, and quarterly periodicities to calculate the relative humidity anywhere on the Earth’s surface. Data from 282 moisture sensors located close to GNSS stations during 1 year (2020) were used to assess the model coefficients. The HGPT2 meteorological parameters were used to process 35 GNSS sites belonging to the International GNSS Service (IGS) using the GAMIT/GLOBK software package. Results show a decreased root-mean-square error (RMSE) and bias values relative to the most used zenith delay models, with a significant impact on the height component. The HGPT2 was developed to be applied in the most diverse areas that can significantly benefit from an ERA5 full-resolution model.


2021 ◽  
pp. 1-22
Author(s):  
Amanda K. Winter ◽  
Huong Le ◽  
Simon Roberts

Abstract This paper explores the perception and politics of air pollution in Shanghai. We present a qualitative case study based on a literature review of relevant policies and research on civil society and air pollution, in dialogue with air quality indexes and field research data. We engage with the concept of China's authoritarian environmentalism and the political context of ecological civilization. We find that discussions about air pollution are often placed in a frame that is both locally temporal (environment) and internationally developmentalist (economy). We raise questions from an example of three applications with different presentations of air quality index measures for the same time and place. This example and frame highlight the central role and connection between technology, data and evidence, and pollution visibility in the case of the perception of air pollution. Our findings then point to two gaps in authoritarian environmentalism research, revealing a need to better understand (1) the role of technology within this governance context, and (2) the tensions created from this non-participatory approach with ecological civilization, which calls for civil society participation.


Sign in / Sign up

Export Citation Format

Share Document