Functional recovery of secondary tropical forests

2021 ◽  
Vol 118 (49) ◽  
pp. e2003405118
Author(s):  
Lourens Poorter ◽  
Danaë M. A. Rozendaal ◽  
Frans Bongers ◽  
de Jarcilene S. Almeida ◽  
Francisco S. Álvarez ◽  
...  

One-third of all Neotropical forests are secondary forests that regrow naturally after agricultural use through secondary succession. We need to understand better how and why succession varies across environmental gradients and broad geographic scales. Here, we analyze functional recovery using community data on seven plant characteristics (traits) of 1,016 forest plots from 30 chronosequence sites across the Neotropics. By analyzing communities in terms of their traits, we enhance understanding of the mechanisms of succession, assess ecosystem recovery, and use these insights to propose successful forest restoration strategies. Wet and dry forests diverged markedly for several traits that increase growth rate in wet forests but come at the expense of reduced drought tolerance, delay, or avoidance, which is important in seasonally dry forests. Dry and wet forests showed different successional pathways for several traits. In dry forests, species turnover is driven by drought tolerance traits that are important early in succession and in wet forests by shade tolerance traits that are important later in succession. In both forests, deciduous and compound-leaved trees decreased with forest age, probably because microclimatic conditions became less hot and dry. Our results suggest that climatic water availability drives functional recovery by influencing the start and trajectory of succession, resulting in a convergence of community trait values with forest age when vegetation cover builds up. Within plots, the range in functional trait values increased with age. Based on the observed successional trait changes, we indicate the consequences for carbon and nutrient cycling and propose an ecologically sound strategy to improve forest restoration success.

2021 ◽  
Vol 4 ◽  
Author(s):  
Sandra Cristina Müller ◽  
Rodrigo Scarton Bergamin ◽  
Kauane Maiara Bordin ◽  
Joice Klipel ◽  
Milena Fermina Rosenfield

Secondary forests originate from natural regeneration after fallow (succession) or restoration. Species assembly in these communities, which can affect ecosystem functions and successional trajectories, is very unpredictable. Trait-based trajectories can shed light on the recovery of ecosystem functions and enable predictions of how the regenerating communities will change with forest age. Regeneration communities are affected by initial conditions and also by canopy structure and functional traits that alter dispersers' attractiveness and coexistence mechanisms. Here we evaluated how community functional traits change over time and tested if functional diversity and composition of the established canopy, as well as the structure of the canopy and forest age, influence the functional structure of regenerating tree communities when compared to their reference forests. For this, we calculated dissimilarity in trait composition (community-weighted means) and in functional diversity of regenerating communities of each succession/restoration stand, using the tree stratum of nearby mature forests as baseline values. Functional trait information comprises leaf, wood density, and reproductive traits from tree species. Our community data contain information from natural successional forests and restoration sites, in the South-Brazilian Atlantic Forest. Predictor variables of functional dissimilarities were forest age, canopy structural variables, canopy functional composition, and functional diversity. Results showed leaf traits (leaf dry matter content, leaf nitrogen content, leaf nitrogen-phosphorus ratio) and seed mass varying with forest age. Canopy functional composition based on leaf traits and total basal area significantly predicted multiple trait functional dissimilarity between the regeneration component of secondary forests and their reference community values. Dissimilarity increased when the canopy was composed of species with more acquisitive traits. Difference in functional diversity was only influenced by forest age. Mid-stage secondary forests showed lower functional diversity than early-stage forests. Our results indicated the importance of canopy traits on the natural regeneration of secondary subtropical forests. If functional similarity with reference forests is a desired objective in order to recover ecosystem functions through natural regeneration, leaf functional traits of canopy trees that establish or are planted in degraded areas must be considered in the successional processes.


2021 ◽  
Vol 120 ◽  
pp. 106955
Author(s):  
G. Reyes-Palomeque ◽  
J.M. Dupuy ◽  
C.A. Portillo-Quintero ◽  
J.L. Andrade ◽  
F.J. Tun-Dzul ◽  
...  

Forests ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 844 ◽  
Author(s):  
Ai-Ying Wang ◽  
Guang-You Hao ◽  
Jing-Jing Guo ◽  
Zhi-Hui Liu ◽  
Jiao-Lin Zhang ◽  
...  

Adaptation and acclimation of tree seedlings to different combinations of light and water conditions can determine the species-specific patterns of distribution along environmental gradients and the underlying physiological mechanisms are fundamental to the understanding of such patterns. Seedlings of two Cyclobalanopsis species naturally occurring in southwest China, with distinct distribution and regeneration characteristics, were grown under 100%, 50% and 4% sunlight conditions and traits related to shade and drought tolerance were studied. Particularly, we investigated whether leaf hydraulics, photosynthetic traits and their functional coordination play an important role in determining seedling environmental adaptation and acclimation of the two species. Seedlings of C. helferiana showed characteristics adapted to high irradiance while C. rex had traits adapted to partially shaded environments. Cyclobalanopsis helferiana had significantly higher maximum net photosynthetic rate (Amax), light compensation point and light saturation point than C. rex and the contrasts were particularly large when they were grown under full sunlight. Cyclobalanopsis helferiana showed the highest Amax when grown under 100% sunlight, while C. rex exhibited the highest Amax at 50% sunlight. Similarly, under full sunlight conditions C. helferiana showed significantly higher leaf hydraulic conductance (Kleaf) than C. rex, i.e., 13.37 vs. 7.09 mmol m−2 s−1 MPa−1 (p < 0.01). The correlation between Kleaf and Amax followed a unified positive correlation across different light treatments of both species. Moreover, leaves of C. helferiana showed greater resistance to drought-induced hydraulic dysfunction and to desiccation than C. rex. The contrasts in functional traits between the two Cyclobalanopsis species are consistent with the hypothesis that there is a trade-off between shade tolerance and drought tolerance. Findings of the present study contribute to a deeper understanding of mechanisms of divergence between closely related (congeneric) species with respect to key ecophysiology associated with natural regeneration.


2019 ◽  
Vol 12 (6) ◽  
pp. 1047-1058 ◽  
Author(s):  
Hélio Menegat ◽  
Divino Vicente Silvério ◽  
Henrique A Mews ◽  
Guarino R Colli ◽  
Ana Clara Abadia ◽  
...  

Abstract Aims Different plant functional groups display diverging responses to the same environmental gradients. Here, we assess the effects of environmental and spatial predictors on species turnover of three functional groups of Brazilian savannas (Cerrado) plants—trees, palms and lianas—across the transition zone between the Cerrado and Amazon biomes in central Brazil. Methods We used edaphic, climatic and plant composition data from nine one-hectare plots to assess the effects of the environment and space on species turnover using a Redundancy Analysis and Generalized Dissimilarity Modeling (GDM), associated with variance partitioning. Important Findings We recorded 167 tree species, 5 palms and 4 liana species. Environmental variation was most important in explaining species turnover, relative to geographic distance, but the best predictors differed between functional groups: geographic distance and silt for lianas; silt for palms; geographic distance, temperature and elevation for trees. Geographic distances alone exerted little influence over species turnover for the three functional groups. The pure environmental variation explained most of the liana and palm turnover, while tree turnover was largely explained by the shared spatial and environmental contribution. The effects of geographic distance upon species turnover leveled off at about 300 km for trees, and 200 km for lianas, whereas they were unimportant for palm species turnover. Our results indicate that environmental factors that determine floristic composition and species turnover differ substantially between plant functional groups in savannas. Therefore, we recommend that studies that aim to investigate the role of environmental conditions in determining plant species turnover should examine plant functional groups separately.


mSystems ◽  
2017 ◽  
Vol 2 (1) ◽  
Author(s):  
James T. Morton ◽  
Liam Toran ◽  
Anna Edlund ◽  
Jessica L. Metcalf ◽  
Christian Lauber ◽  
...  

ABSTRACT The horseshoe effect is often considered an artifact of dimensionality reduction. We show that this is not true in the case for microbiome data and that, in fact, horseshoes can help analysts discover microbial niches across environments. The horseshoe effect is a phenomenon that has long intrigued ecologists. The effect was commonly thought to be an artifact of dimensionality reduction, and multiple techniques were developed to unravel this phenomenon and simplify interpretation. Here, we provide evidence that horseshoes arise as a consequence of distance metrics that saturate—a familiar concept in other fields but new to microbial ecology. This saturation property loses information about community dissimilarity, simply because it cannot discriminate between samples that do not share any common features. The phenomenon illuminates niche differentiation in microbial communities and indicates species turnover along environmental gradients. Here we propose a rationale for the observed horseshoe effect from multiple dimensionality reduction techniques applied to simulations, soil samples, and samples from postmortem mice. An in-depth understanding of this phenomenon allows targeting of niche differentiation patterns from high-level ordination plots, which can guide conventional statistical tools to pinpoint microbial niches along environmental gradients. IMPORTANCE The horseshoe effect is often considered an artifact of dimensionality reduction. We show that this is not true in the case for microbiome data and that, in fact, horseshoes can help analysts discover microbial niches across environments.


ISRN Ecology ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Daniela J. Shebitz ◽  
William Eaton

Succession following deforestation in Neotropical forests has been investigated extensively, yet rarely have studies connected nutrient dynamics with vegetation. This study was conducted in lowland wet forests of Maquenque, Costa Rica. The objectives were (1) to compare carbon (C), nitrogen (N), and phosphorus (P) characteristics and understory vegetation diversity between regenerating forests and primary forests; and (2) to use these variables to evaluate P. macroloba’s successional role. Four 300 m2 plots were established in primary and secondary forests where P. macroloba was the dominant N-fixing tree. Soil and vegetation data were collected from 2008 to 2010. Values of indicators of C, N, and P cycle activity were generally greater in primary than in secondary forest soils. Efficiency of organic C use and the relative contribution of respiration and organic C to soil biomass were also greater in the primary forest. These trends corresponded with greater richness, biomass, and cover of total and leguminous plant species, greater volume of P. macroloba in primary stands, and greater density of P. macroloba in secondary stands. As cleared regions of former primary forest regenerate, P. macroloba is the important dominant N-fixing tree and a critical driver of C, N, and P recuperation and ecosystem recovery.


2014 ◽  
Vol 30 (5) ◽  
pp. 419-434 ◽  
Author(s):  
Tijl Essens ◽  
Euridice Leyequién ◽  
Carmen Pozo ◽  
Henricus F. M. Vester ◽  
Hector A. Hernández-Arana

Abstract:Understanding patterns in plant and herbivorous insect diversity across spatial and temporal scales is fundamental to ecology, but comparative multi-taxonomic studies in tropical seasonally dry forests remain scarce. In 36 sites, distributed over three forest age classes (5–10 y, 10–30 y, >100 y) and three seasonal forest types (dry, intermediate, humid), we sampled plants of different stem diameter classes while caterpillars were sampled across vertically distributed forest layers during three seasons over the year. We recorded 299 plant species and 485 caterpillar morphospecies. For large woody plants, species numbers showed a gradually increasing trend with forest age in the intermediate and humid forest types, while the main portion of explained variation in overall species turnover was accounted for by the forest type × forest age interaction (21.3–23.1% of 44.4–48.7%). Ordinations and multivariate pairwise comparisons suggested a faster but also very distinct successional development of species diversity of large plants in the driest compared with humid and intermediate forest types. In contrast, highest species numbers of small plants in the undergrowth was often found in the 5–10 y-old vegetation across forest types, whereas forest type was the major factor in overall species turnover (contributing 24.2% of 48.7% explained variation). Caterpillar species turnover was most correlated to species turnover of small plants; however, variation in caterpillar species diversity appears to be mostly regulated by seasonal cues, and to a lesser extent by patterns of regional turnover and local diversity of undergrowth plant species.


2021 ◽  
Author(s):  
J. Aaron Hogan ◽  
Han Xu ◽  
Christopher Baraloto

Abstract Accounting for intraspecific trait variation (ITV) is central to plant ecology and crucial for vegetation modeling efforts. ITV can be substantial; however, it remains unclear how ITV influences community-weighted mean (CWM) trait estimates. We use leaf and root trait data from 423 trees of 72 species from 15 Angiosperm families in combination with community data from 164 small plots comprising 582 species to evaluate the contribution of ITV to CWMs, comparing unlogged, primary forest to selectively-logged and clear-cut secondary forest. We examine the effect of gap-filling missing trait values via phylogenetic generalized linear modeling (PhyloPars) on CWMs. For six of seven traits, ITV negatively covaried with species turnover to generate larger CWM differences than observed if ITV was not integrated. For example, plot average CWM specific leaf area was 10.7 and 10.4 m2 kg− 1 for primary and secondary forest, not accounting for ITV, but shifted to 9.8 and 11.1 m2 kg− 1 after doing so. Specific root length showed a similar trend. Our results from 72-species assemblages were supported by the results from the gap-filled analysis using the entire community, where the contribution of ITV to CWMs ranged from 25 to 75%, with nearly all trait variation due to forest type attributable to ITV. Therefore, CWM trait estimates became more-conservative with forest age, whereas ITV for many traits showed an acquisitive shift, and because of negative covariation between ITV and species turnover, forest age-related CWM differences increased. Differences were unaffected, if not strengthened, by gap-filling incomplete functional trait matrices.


2017 ◽  
Vol 332 ◽  
pp. 43-55 ◽  
Author(s):  
Alain Jaures Gbètoho ◽  
Augustin K. N. Aoudji ◽  
Lizanne Roxburgh ◽  
Jean C. Ganglo

In this study, species distribution model- ling (SDM) was applied to the manage- ment of secondary forests in Benin. This study aims at identifying suitable areas where the use of candidate pioneer spe- cies, such as Lonchocarpus sericeus and Anogeissus leiocarpa, could be targeted to ensure at low cost, currently and  in  the context of global climate change, fast reconstitution of secondary forests and disturbed ecosystems and the recovery  of their biodiversity. Using occurrence records from the Global Biodiversity Infor- mation Facility (GBIF) website and cur- rent environmental data, the factors that affected the distribution of the species were assessed in West Africa. The models developed in MaxEnt and  R  software  for West Africa only, for both species, showed good predictive power with  AUC > 0.80 and AUC ratios well above 1.5. The results were projected in future climate at the horizon 2055, using AfriClim data under rcp4.5 and rcp8.5 and suggested a little reduction in the range of L. seri- ceus and any variation for A. leiocarpa. The potential distribution of the two spe- cies indicated that they could be used for vegetation restoration activities both now and in the mid-21st century. Improve- ment are needed through the use of com- plementary data, the extension to others species and the assessment of uncertain- ties related to these predictions.


2016 ◽  
Author(s):  
Ning Dong ◽  
Iain Colin Prentice ◽  
Bradley J. Evans ◽  
Stefan Caddy-Retalic ◽  
Andrew J. Lowe ◽  
...  

Abstract. Nitrogen content per unit leaf area (Narea) is a key variable in plant functional ecology and biogeochemistry. Narea comprises a structural component, which scales with leaf mass per area (LMA), and a metabolic component, which scales with Rubisco capacity. The co-ordination hypothesis, as implemented in LPJ and related global vegetation models, predicts that Rubisco capacity should be directly proportional to irradiance but should decrease with ci:ca and temperature because the amount of Rubisco required to achieve a given assimilation rate declines with both. We tested these predictions using LMA, leaf δ13C and leaf N measurements on complete species assemblages sampled at sites on a North-South transect from tropical to temperate Australia. Partial effects of mean canopy irradiance, mean annual temperature and ci:ca (from δ13C) on Narea were all significant and their directions and magnitudes were in line with predictions. Over 80 % of the variance in community-mean (ln) Narea was accounted for by these predictors plus LMA. Moreover, Narea could be decomposed into two components, one proportional to LMA (slightly steeper in N-fixers), the other to predicted Rubisco activity. Trait gradient analysis revealed ci:ca to be perfectly plastic, while species turnover contributed about half the variation in LMA and Narea. Interest has surged in methods to predict continuous leaf-trait variation from environmental factors, in order to improve ecosystem models. Our results indicate that Narea has a useful degree of predictability, from a combination of LMA and ci:ca – themselves in part environmentally determined – with Rubisco activity, as predicted from local growing conditions. This is consistent with a 'plant-centred' approach to modelling, emphasizing the adaptive regulation of traits. Models that account for biodiversity will also need to partition community-level trait variation into components due to phenotypic plasticity and/or genotypic differentiation within species, versus progressive species replacement, along environmental gradients. Our analysis suggests that variation in Narea is about evenly split between these two modes.


Sign in / Sign up

Export Citation Format

Share Document