scholarly journals Dynamic changes in DICER levels in adipose tissue control metabolic adaptations to exercise

2020 ◽  
Vol 117 (38) ◽  
pp. 23932-23941
Author(s):  
Bruna B. Brandão ◽  
Søren Madsen ◽  
Atefeh Rabiee ◽  
Matteo Oliverio ◽  
Gabriel P. Ruiz ◽  
...  

DICER is a key enzyme in microRNA (miRNA) biogenesis. Here we show that aerobic exercise training up-regulates DICER in adipose tissue of mice and humans. This can be mimicked by infusion of serum from exercised mice into sedentary mice and depends on AMPK-mediated signaling in both muscle and adipocytes. Adipocyte DICER is required for whole-body metabolic adaptations to aerobic exercise training, in part, by allowing controlled substrate utilization in adipose tissue, which, in turn, supports skeletal muscle function. Exercise training increases overall miRNA expression in adipose tissue, and up-regulation of miR-203-3p limits glycolysis in adipose under conditions of metabolic stress. We propose that exercise training-induced DICER-miR-203-3p up-regulation in adipocytes is a key adaptive response that coordinates signals from working muscle to promote whole-body metabolic adaptations.

2018 ◽  
Vol 315 (3) ◽  
pp. R461-R468 ◽  
Author(s):  
Adam R. Konopka ◽  
Christopher A. Wolff ◽  
Miranda K. Suer ◽  
Matthew P. Harber

Intermuscular adipose tissue (IMAT) is associated with impaired skeletal muscle contractile and metabolic function. Myostatin and downstream signaling proteins such as cyclin-dependent kinase 2 (CDK2) contribute to the regulation of adipose and skeletal muscle mass in cell culture and animals models, but this relationship remains incompletely understood in humans. The purpose of this study was to determine if the infiltration of IMAT was associated with skeletal muscle myostatin and downstream proteins before and after 12 wk of aerobic exercise training (AET) in healthy older women (OW; 69 ± 2 yr), older men (OM; 74 ± 3 yr), and young men (YM; 20 ± 1 yr). We found that the infiltration of IMAT was correlated with myostatin and phosphorylated CDK2 at tyrosine 15 [P-CDK2(Tyr15)]. IMAT infiltration was greater in the older subjects and was associated with lower skeletal muscle function and exercise capacity. After 12 wk of AET, there was no change in body weight. Myostatin and P-CDK2(Tyr15) were both decreased after AET, and the reduction in myostatin was associated with decreased IMAT infiltration. The decrease in myostatin and IMAT occurred concomitantly with increased exercise capacity, skeletal muscle size, and function after AET. These findings demonstrate that the reduction in IMAT infiltration after AET in weight stable individuals was accompanied by improvements in skeletal muscle function and exercise capacity. Moreover, the association between myostatin and IMAT was present in the untrained state and in response to exercise training, strengthening the potential regulatory role of myostatin on IMAT.


2010 ◽  
Vol 109 (3) ◽  
pp. 702-709 ◽  
Author(s):  
C. R. Bueno ◽  
J. C. B. Ferreira ◽  
M. G. Pereira ◽  
A. V. N. Bacurau ◽  
P. C. Brum

The cellular mechanisms of positive effects associated with aerobic exercise training on overall intrinsic skeletal muscle changes in heart failure (HF) remain unclear. We investigated potential Ca2+ abnormalities in skeletal muscles comprising different fiber compositions and investigated whether aerobic exercise training would improve muscle function in a genetic model of sympathetic hyperactivity-induced HF. A cohort of male 5-mo-old wild-type (WT) and congenic α2A/α2C adrenoceptor knockout (ARKO) mice in a C57BL/6J genetic background were randomly assigned into untrained and trained groups. Exercise training consisted of a 8-wk running session of 60 min, 5 days/wk (from 5 to 7 mo of age). After completion of the exercise training protocol, exercise tolerance was determined by graded treadmill exercise test, muscle function test by Rotarod, ambulation and resistance to inclination tests, cardiac function by echocardiography, and Ca2+ handling-related protein expression by Western blot. α2A/α2CARKO mice displayed decreased ventricular function, exercise intolerance, and muscle weakness paralleled by decreased expression of sarcoplasmic Ca2+ release-related proteins [α1-, α2-, and β1-subunits of dihydropyridine receptor (DHPR) and ryanodine receptor (RyR)] and Ca2+ reuptake-related proteins [sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA)1/2 and Na+/Ca2+ exchanger (NCX)] in soleus and plantaris. Aerobic exercise training significantly improved exercise tolerance and muscle function and reestablished the expression of proteins involved in sarcoplasmic Ca2+ handling toward WT levels. We provide evidence that Ca2+ handling-related protein expression is decreased in this HF model and that exercise training improves skeletal muscle function associated with changes in the net balance of skeletal muscle Ca2+ handling proteins.


2019 ◽  
Vol 127 (6) ◽  
pp. 1562-1568 ◽  
Author(s):  
Gary R. Hunter ◽  
Douglas R. Moellering ◽  
Samuel T. Windham ◽  
Shannon L. Mathis ◽  
Marcas M. Bamman ◽  
...  

Aerobic capacity is negatively related to locomotion economy. The purpose of this paper is to determine what effect aerobic exercise training has on the relationship between net cycling oxygen uptake (inverse of economy) and aerobic capacity [peak oxygen uptake (V̇o2peak)], as well as what role mitochondrial coupled and uncoupled respiration may play in whole body aerobic capacity and cycling economy. Cycling net oxygen uptake and V̇o2peak were evaluated on 31 premenopausal women before exercise training (baseline) and after 8–16 wk of aerobic training. Muscle tissue was collected from 15 subjects at baseline and post-training. Mitochondrial respiration assays were performed using high-resolution respirometry. Pre- ( r = 0.46, P < 0.01) and postexercise training ( r = 0.62, P < 0.01) V̇o2peak and cycling net oxygen uptake were related. In addition, uncoupled and coupled fat respiration were related both at baseline ( r = 0.62, P < 0.01) and post-training ( r = 0.89, P < 01). Post-training coupled ( r = 0.74, P < 0.01) and uncoupled carbohydrate respiration ( r = 0.52, P < 05) were related to cycle net oxygen uptake. In addition, correlations between V̇o2peak and cycle net oxygen uptake persist both at baseline and after training, even after adjusting for submaximal cycle respiratory quotient (an index of fat oxidation). These results suggest that the negative relationship between locomotion economy and aerobic capacity is increased following exercise training. In addition, it is proposed that at least one of the primary factors influencing this relationship has its foundation within the mitochondria. Strong relationships between coupled and uncoupled respiration appear to be contributing factors for this relationship. NEW & NOTEWORTHY The negative relationship between cycle economy and aerobic capacity is increased following exercise training. The strong relationship between coupled and uncoupled respiration, especially after training, appears to be contributing to this negative relationship between aerobic capacity and cycling economy, suggesting that mitochondrial economy is not increased following aerobic exercise training. These results are suggestive that training programs designed to improve locomotion economy should focus on changing biomechanics.


2015 ◽  
Vol 3 (6) ◽  
pp. e12415 ◽  
Author(s):  
R. Grace Walton ◽  
Brian S. Finlin ◽  
Jyothi Mula ◽  
Douglas E. Long ◽  
Beibei Zhu ◽  
...  

2020 ◽  
Vol 21 (24) ◽  
pp. 9745
Author(s):  
José Cesar Rosa-Neto ◽  
Loreana Sanches Silveira

Adipose tissue is considered an endocrine organ whose complex biology can be explained by the diversity of cell types that compose this tissue. The immune cells found in the stromal portion of adipose tissue play an important role on the modulation of inflammation by adipocytokines secretion. The interactions between metabolic active tissues and immune cells, called immunometabolism, is an important field for discovering new pathways and approaches to treat immunometabolic diseases, such as obesity and cancer. Moreover, physical exercise is widely known as a tool for prevention and adjuvant treatment on metabolic diseases. More specifically, aerobic exercise training is able to increase the energy expenditure, reduce the nutrition overload and modify the profile of adipocytokines and myokines with paracrine and endocrine effects. Therefore, our aim in this review was to cover the effects of aerobic exercise training on the immunometabolism of adipose tissue in obesity and cancer, focusing on the exercise-related modification on adipose tissue or immune cells isolated as well as their interaction.


2021 ◽  
Vol 10 (11) ◽  
pp. 2423
Author(s):  
Liam P. Kelly ◽  
Augustine J. Devasahayam ◽  
Arthur R. Chaves ◽  
Marie E. Curtis ◽  
Edward W. Randell ◽  
...  

Moderate-intensity aerobic exercise training is an important treatment strategy to enhance functional recovery and decrease cardiometabolic risk factors after stroke. However, stroke related impairments limit access to ergometer-type exercise. The aims of the current study were (1) to evaluate whether our task-oriented circuit training protocol (intermittent functional training; IFT) could be used to sustain moderate-intensity aerobic workloads over a 10-week intervention period, and (2) to investigate its preliminary effects on cardiorespiratory fitness and metabolic profiles compared to constant-load ergometer-type exercise (CET). Forty chronic hemiparetic stroke survivors were randomized to receive 30 sessions of IFT or CET over ten weeks. Similar proportions of participants were randomized to IFT (7/19) and CET (9/18) sustained workloads associated with moderate-intensity aerobic exercise over the study period (p = 0.515). However, CET was associated with more substantial changes in maximal oxygen uptake (MD = 2.79 mL min−1 kg−1 CI: 0.84 to 4.74) compared to IFT (MD = 0.62 mL min−1 kg−1 CI: −0.38 to 1.62). Pre to post changes in C-reactive protein (−0.9 mg/L; p =0.017), short-term glycemia (+14.7 mol/L; p = 0.026), and resting whole-body carbohydrate oxidation (+24.2 mg min−1; p = 0.046) were observed when considering both groups together. Accordingly, IFT can replicate the aerobic intensities sustained during traditional ergometer-type exercise training. More work is needed to evaluate the dose–response effects of such task-oriented circuit training protocols on secondary prevention targets across the continuum of stroke recovery.


Sign in / Sign up

Export Citation Format

Share Document