scholarly journals METTL3-dependent N6-methyladenosine RNA modification mediates the atherogenic inflammatory cascades in vascular endothelium

2021 ◽  
Vol 118 (7) ◽  
pp. e2025070118
Author(s):  
Chian-Shiu Chien ◽  
Julie Yi-Shuan Li ◽  
Yueh Chien ◽  
Mong-Lien Wang ◽  
Aliaksandr A. Yarmishyn ◽  
...  

Atherosclerosis is characterized by the plaque formation that restricts intraarterial blood flow. The disturbed blood flow with the associated oscillatory stress (OS) at the arterial curvatures and branch points can trigger endothelial activation and is one of the risk factors of atherosclerosis. Many studies reported the mechanotransduction related to OS and atherogenesis; however, the transcriptional and posttranscriptional regulatory mechanisms of atherosclerosis remain unclear. Herein, we investigated the role of N6-methyladenosine (m6A) RNA methylation in mechanotransduction in endothelial cells (ECs) because of its important role in epitranscriptome regulation. We have identified m6A methyltransferase METTL3 as a responsive hub to hemodynamic forces and atherogenic stimuli in ECs. OS led to an up-regulation of METTL3 expression, accompanied by m6A RNA hypermethylation, increased NF-κB p65 Ser536 phosphorylation, and enhanced monocyte adhesion. Knockdown of METTL3 abrogated this OS-induced m6A RNA hypermethylation and other manifestations, while METTL3 overexpression led to changes resembling the OS effects. RNA-sequencing and m6A-enhanced cross-linking and immunoprecipitation (eCLIP) experiments revealed NLRP1 and KLF4 as two hemodynamics-related downstream targets of METTL3-mediated hypermethylation. The METTL3-mediated RNA hypermethylation up-regulated NLRP1 transcript and down-regulated KLF4 transcript through YTHDF1 and YTHDF2 m6A reader proteins, respectively. In the in vivo atherosclerosis model, partial ligation of the carotid artery led to plaque formation and up-regulation of METTL3 and NLRP1, with down-regulation of KLF4; knockdown of METTL3 via repetitive shRNA administration prevented the atherogenic process, NLRP3 up-regulation, and KLF4 down-regulation. Collectively, we have demonstrated that METTL3 serves a central role in the atherogenesis induced by OS and disturbed blood flow.

Blood ◽  
2005 ◽  
Vol 106 (7) ◽  
pp. 2334-2339 ◽  
Author(s):  
Vandana S. Dole ◽  
Wolfgang Bergmeier ◽  
Heather A. Mitchell ◽  
Sarah C. Eichenberger ◽  
Denisa D. Wagner

AbstractThe presence of activated platelets and platelet-leukocyte aggregates in the circulation accompanies major surgical procedures and occurs in several chronic diseases. Recent findings that activated platelets contribute to the inflammatory disease atherosclerosis made us address the question whether activated platelets stimulate normal healthy endothelium. Infusion of activated platelets into young mice led to the formation of transient platelet-leukocyte aggregates and resulted in a several-fold systemic increase in leukocyte rolling 2 to 4 hours after infusion. Rolling returned to baseline levels 7 hours after infusion. Infusion of activated P-selectin-/- platelets did not induce leukocyte rolling, indicating that platelet P-selectin was involved in the endothelial activation. The endothelial activation did not require platelet CD40L. Leukocyte rolling was mediated solely by the interaction of endothelial P-selectin and leukocyte P-selectin glycoprotein ligand 1 (PSGL-1). Endothelial P-selectin is stored with von Willebrand factor (VWF) in Weibel-Palade bodies. The release of Weibel-Palade bodies on infusion of activated platelets was indicated by both elevation of plasma VWF levels and by an increase in the in vivo staining of endothelial P-selectin. We conclude that the presence of activated platelets in circulation promotes acute inflammation by stimulating secretion of Weibel-Palade bodies and P-selectin–mediated leukocyte rolling.


Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Sumit R Monu ◽  
Mani Maheshwari ◽  
Hong Wang ◽  
Ed Peterson ◽  
Oscar Carretero

In obesity, renal damage is caused by increase in renal blood flow (RBF), glomerular capillary pressure (P GC ), and single nephron glomerular filtration rate but the mechanism behind this alteration in renal hemodynamics is unclear. P GC is controlled mainly by the afferent arteriole (Af-Art) resistance. Af-Art resistance is regulated by mechanism similar to that in other arterioles and in addition, it is regulated by two intrinsic feedback mechanisms: 1) tubuloglomerular feedback (TGF) that causes Af-Art constriction in response to an increase in sodium chloride (NaCl) in the macula densa, via sodium–potassium-2-chloride cotransporter-2 (NKCC2) and 2) connecting tubule glomerular feedback (CTGF) that causes Af-Art dilatation and is mediated by connecting tubule via epithelial sodium channel (ENaC). CTGF is blocked by the ENaC inhibitor benzamil. Attenuation of TGF reduces Af-Art resistance and allows systemic pressure to get transmitted to the glomerulus that causes glomerular barotrauma/damage. In the current study, we tested the hypothesis that TGF is attenuated in obesity and that CTGF contributes to this effect. We used Zucker obese rats (ZOR) while Zucker lean rats (ZLR) served as controls. We performed in-vivo renal micropuncture of individual rat nephrons while measuring stop-flow pressure (P SF ), an index of P GC. TGF response was measured as a decrease in P SF induced by changing the rate of late proximal perfusion from 0 to 40nl/min in stepwise manner.CTGF was calculated as the difference of P SF value between vehicle and benzamil treatment, at each perfusion rate. Maximal TGF response was significantly less in ZOR (6.16 ± 0.52 mmHg) when compared to the ZLR (8.35 ± 1.00mmHg), p<0.05 , indicating TGF resetting in the ZOR. CTGF was significantly higher in ZOR (6.33±1.95 mmHg) when compared to ZLR (1.38±0.89 mmHg), p<0.05 . When CTGF was inhibited with the ENaC blocker Benzamil (1μM), maximum P SF decrease was 12.30±1.72 mmHg in ZOR and 10.60 ± 1.73 mmHg in ZLR, indicating that blockade of CTGF restored TGF response in ZOR. These observations led us to conclude that TGF is reset in ZOR and that enhanced CTGF contributes to this effect. Increase in CTGF may explain higher renal blood flow, increased P GC and higher glomerular damage in obesity.


2007 ◽  
Vol 98 (10) ◽  
pp. 806-812 ◽  
Author(s):  
Vandana Dole ◽  
Wolfgang Bergmeier ◽  
Ian Patten ◽  
Junichi Hirahashi ◽  
Tanya Mayadas ◽  
...  

SummaryWe have previously shown that activated platelets in circulation stimulate release of endothelial Weibel-Palade bodies thus increasing leukocyte rolling in venules. P-selectin on the activated platelets mediates adhesion to leukocytes via PSGL-1 and is rapidly shed into plasma. We were interested in studying the role of PSGL-1 in regulating expression and function of platelet P-selectin. We show here that PSGL-1 is critical for the activation of endothelial cells in venules of mice infused with activated platelets. The interaction of platelet P-selectin with PSGL-1 is also required for P-selectin shedding, as P-selectin was retained significantly longer on the surface of activated platelets infused into PSGL-1-/- compared to wild-type mice. The leukocyte integrin αMβ2 (Mac-1) was not required for P-selectin shedding. In addition to shedding, P-selectin can be downregulated from the platelet surface through internalization and this is the predominant mechanism in the absence of PSGL-1. We demonstrate that leukocyte- neutrophil elastase,known to cleave P-selectin in vitro, is not the major sheddase for P-selectin in vivo. In conclusion, interaction of platelet P-selectin with PSGL-1 is crucial for activation of the endothelium andWeibel-Palade body secretion. The interaction with PSGL-1 also results in rapid shedding of P-selectin thus downregulating the inflammatory potential of the platelet.


2020 ◽  
Vol 26 (1) ◽  
Author(s):  
Chong Wang ◽  
Lingling Li ◽  
Mengya Li ◽  
Weiqiong Wang ◽  
Yanfang Liu ◽  
...  

Abstract Background Long non-coding RNAs (lncRNAs) are biomarkers participating in multiple disease development including acute myeloid leukemia (AML). Here, we investigated molecular mechanism of X Inactive-Specific Transcript (XIST) in regulating cellular viability, apoptosis and drug resistance in AML. Methods XIST, miR-29a and myelocytomatosis oncogene (MYC) expression in AML bone marrow cells collected from 62 patients was evaluated by RT-qPCR and Western blot analysis. Besides, the relationship among XIST, miR-29a and MYC was analyzed by dual luciferase reporter assay, RIP, and RNA pull down assays. AML KG-1 cells were treated with anti-tumor drug Adriamycin. The role of XIST/miR-29a/MYC in cellular viability, apoptosis and drug resistance in AML was accessed via gain- and loss-of-function approaches. At last, we evaluated role of XIST/miR-29a/MYC on tumorigenesis in vivo. Results XIST and MYC were up-regulated, and miR-29a was down-regulated in AML bone marrow cells. Silencing XIST inhibited cellular activity and drug resistance but promoted cellular apoptosis of KG-1 cells by down-regulating MYC. XIST inhibited miR-29a expression to up-regulate MYC. Moreover, silencing XIST inhibited tumorigenesis of AML cells in vivo. Conclusions Overall, down-regulation of XIST decreased MYC expression through releasing the inhibition on miR-29a, thereby reducing drug resistance, inhibiting viability and promoting apoptosis of AML cells.


1988 ◽  
Vol 254 (5) ◽  
pp. H970-H975 ◽  
Author(s):  
W. R. Law ◽  
R. M. Raymond

Myocardial adenosine (ADO) has long been regarded as a regulator of coronary blood flow. In other tissues, such as adipose and skeletal muscle, much attention has focused on the role of ADO as a metabolic regulator of the actions of insulin. In the present study, we determined the effect of ADO infusion on insulin-stimulated myocardial glucose uptake (MGU). Mongrel dogs of either sex were instrumented to obtain arterial-coronary sinus differences for glucose, lactate, and oxygen. These were multiplied by circumflex artery blood flow (Q) to obtain uptake values. Measurements were made before and during hyperinsulinemic (4 U/min)-euglycemic clamp (clamp) with intracoronary infusions of saline, ADO, adenosine deaminase (ADA), or nitroprusside (NP). During clamp, MGU increased from a basal value of 3.0 +/- 0.8 mg/min (mean +/- SE) to 5.53 +/- 0.8 mg/min. Adenosine infusion potentiated this response, raising MGU further to 9.02 +/- 1.1 mg/min while not significantly affecting lactate or oxygen uptakes. Infusion of ADA confirmed the specificity of the response by blocking the metabolic effect of exogenously infused ADO. When NP was infused, Q increased significantly without altering MGU, indicating that the metabolic response to ADO was independent of the changes it caused in Q. A dose-response relationship existed between ADO and insulin-stimulated MGU. The metabolic response to ADO was more sensitive than the vasodilator response. It is concluded that ADO acts as a regulator of insulin in heart. This metabolic regulation occurs independent of changes in coronary blood flow.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2398-2398
Author(s):  
Elena K Siapati ◽  
Magda Papadaki ◽  
Zoi Kozaou ◽  
Erasmia Rouka ◽  
Evridiki Michali ◽  
...  

Abstract Abstract 2398 Poster Board II-375 B-catenin is the central effector molecule of the canonical wnt signaling pathway which governs cell fate and differentiation during embryogenesis as well as self-renewal of hematopoietic stem cells. Deregulation of the pathway has been observed in various malignancies including myeloid leukemias where over-expression of β-catenin is an independent adverse prognostic factor. In the present study we examined the functional outcome of stable β-catenin down-regulation through lentivirus-mediated expression of short hairpin RNA (shRNA). Reduction of the β-catenin levels in AML cell lines and patient samples diminished their in vitro proliferation ability without significantly affecting cell viability. In order to study the role of β-catenin in vivo, we transplanted leukemic cell lines with control or reduced levels of β-catenin in NOD/SCID animals and analyzed the engraftment levels in the bone marrow. We observed that while the immediate homing of the cells was not affected by the β-catenin levels, the bone marrow engraftment was directly dependent on its levels. Subsequent examination of bone marrow sections revealed that the reduced engraftment was partly due to the inability of the cells with lower β-catenin levels to dock to the endosteal niches, a finding that was confirmed in competitive repopulation assays with untransduced cells. When we examined the expression levels of adhesion molecules and integrins in engrafted cells in vivo, we observed a significant down-regulation of CD44 expression, a molecule that participates in the interaction of HSCs with the niche. Gene expression analysis of the components of the wnt signaling pathway showed that the pathway is subject to tight transcriptional regulation with minor expression deviations. We did, however, observe an up-regulation in components that participate in the non-canonical wnt signaling pathways such as the WNT5B ligand. Ongoing experiments in normal cord blood CD34+ cells will determine the in vivo role of β-catenin signaling in normal hematopoietic progenitors. In conclusion, our study showed that β-catenin comprises an integral part in the development and progression of AML in vivo, indicating that manipulation of the wnt pathway may hold a therapeutic potential in the management of AML. Disclosures: No relevant conflicts of interest to declare.


Author(s):  
Li Zhang ◽  
Zongtao Chai ◽  
Siyuan Kong ◽  
Jiling Feng ◽  
Man Wu ◽  
...  

Hepatocellular carcinoma (HCC) is one of the malignant tumors with poor prognosis. High expression level of cofilin 1 (CFL1) has been found in many types of cancers. However, the role of CFL1 in HCC hasn’t been known clearly. Here, we found that CFL1 was up regulated in human HCC and significantly associated with both overall survival and disease-free survival in HCC patients. Nujiangexanthone A (NJXA), the caged xanthones, isolated from gamboge plants decreased the expression of CFL1, which also inhibited the migration, invasion and metastasis of HCC cells in vitro and in vivo. Down regulation of CFL1 inhibited aggressiveness of HCC cells, which mimicked the effect of NJXA. Mechanism study indicated that, knockdown of CFL1 or treatment with NJXA increased the level of F-actin and disturbed the balance between F-actin and G-actin. In conclusion, our findings reveal the role of CFL1 in HCC metastasis through the CFL1/F-actin axis, and suggest that CFL1 may be a potential prognostic marker and a new therapeutic target. NJXA can effectively inhibit the metastasis of HCC cells by down regulating the expression of CFL1, which indicates the potential of NJXA for preventing metastasis in HCC.


1993 ◽  
Vol 265 (5) ◽  
pp. H1750-H1761 ◽  
Author(s):  
M. P. Fletcher ◽  
G. L. Stahl ◽  
J. C. Longhurst

Intracoronary C5a in swine decreases coronary blood flow and regional myocardial segment shortening, responses mediated by thromboxane (Tx) A2-induced coronary vasoconstriction and intramyocardial trapping of granulocytes (PMNs). We sought to determine the origin of TxA2 and to investigate the role of CD18-dependent PMN function by utilizing an anti-CD18 monoclonal antibody, IB4. Isolated C5a-stimulated PMNs or platelets did not produce TxB2. However, together, C5a-stimulated PMNs and platelets produced TxB2. IB4 bound porcine PMN surface CD18 and blocked C5a-induced PMN functions. In vivo, IB4 loading (2 mg/kg) transiently decreased arterial blood pressure and circulating platelet counts in six of nine animals (390 +/- 31 vs. 176 +/- 41 X 10(6)/ml, control vs. IB4; P < 0.002) and significantly ameliorated C5a-induced decreases in coronary venous PMN count (-4.1 +/- 0.6 vs. -1.4 +/- 0.8 X 10(6) cells/ml), coronary artery blood flow (-10 +/- 1 vs. -4 +/- 1 ml/min), and segment shortening (-15 +/- 2 vs. -8 +/- 2%, C5a vs. C5a + IB4). We conclude that 1) production of TxB2 in response to C5a is mediated by a PMN-platelet interaction, 2) IB4 functionally blocks CD18 on porcine PMNs, and 3) C5a-induced myocardial PMN extraction is mediated, in part, by a CD18-dependent mechanism. These results suggest that PMN-platelet interactions and CD18-dependent PMN extraction are important in C5a-induced myocardial ischemia.


2017 ◽  
Vol 39 (5) ◽  
pp. 849-858 ◽  
Author(s):  
Kurt J Smith ◽  
Ryan L Hoiland ◽  
Ryan Grove ◽  
Hamish McKirdy ◽  
Louise Naylor ◽  
...  

The mechanistic role of arterial shear stress in the regulation of cerebrovascular responses to physiological stimuli (exercise and hypercapnia) is poorly understood. We hypothesised that, if shear stress is a key regulator of arterial dilation, then matched increases in shear, induced by distinct physiological stimuli, would trigger similar dilation of the large extra-cranial arteries. Participants ( n = 10) participated in three 30-min experimental interventions, each separated by ≥48 h: (1) mild-hypercapnia (FICO2:∼0.045); (2) submaximal cycling (EX; 60%HRreserve); or (3) resting (time-matched control, CTRL). Blood flow, diameter, and shear rate were assessed (via Duplex ultrasound) in the internal carotid and vertebral arteries (ICA, VA) at baseline, during and following the interventions. Hypercapnia and EX produced similar elevations in blood flow and shear rate through the ICA and VA ( p < 0.001), which were both greater than CTRL. Vasodilation of ICA and VA diameter in response to hypercapnia (5.3 ± 0.8 and 4.4 ± 2.0%) and EX (4.7 ± 0.7 and 4.7 ± 2.2%) were similar, and greater than CTRL ( p < 0.001). Our findings indicate that matched levels of shear, irrespective of their driving stimulus, induce similar extra-cranial artery dilation. We demonstrate, for the first time in humans, an important mechanistic role for the endothelium in regulating cerebrovascular response to common physiological stimuli in vivo.


2006 ◽  
Vol 100 (1) ◽  
pp. 307-317 ◽  
Author(s):  
Raymond C. Koehler ◽  
Debebe Gebremedhin ◽  
David R. Harder

Astrocytes send processes to synapses and blood vessels, communicate with other astrocytes through gap junctions and by release of ATP, and thus are an integral component of the neurovascular unit. Electrical field stimulations in brain slices demonstrate an increase in intracellular calcium in astrocyte cell bodies transmitted to perivascular end-feet, followed by a decrease in vascular smooth muscle calcium oscillations and arteriolar dilation. The increase in astrocyte calcium after neuronal activation is mediated, in part, by activation of metabotropic glutamate receptors. Calcium signaling in vitro can also be influenced by adenosine acting on A2B receptors and by epoxyeicosatrienoic acids (EETs) shown to be synthesized in astrocytes. Prostaglandins, EETs, arachidonic acid, and potassium ions are candidate mediators of communication between astrocyte end-feet and vascular smooth muscle. In vivo evidence supports a role for cyclooxygenase-2 metabolites, EETs, adenosine, and neuronally derived nitric oxide in the coupling of increased blood flow to increased neuronal activity. Combined inhibition of the EETs, nitric oxide, and adenosine pathways indicates that signaling is not by parallel, independent pathways. Indirect pharmacological results are consistent with astrocytes acting as intermediaries in neurovascular signaling within the neurovascular unit. For specific stimuli, astrocytes are also capable of transmitting signals to pial arterioles on the brain surface for ensuring adequate inflow pressure to parenchymal feeding arterioles. Therefore, evidence from brain slices and indirect evidence in vivo with pharmacological approaches suggest that astrocytes play a pivotal role in regulating the fundamental physiological response coupling dynamic changes in cerebral blood flow to neuronal synaptic activity. Future work using in vivo imaging and genetic manipulation will be required to provide more direct evidence for a role of astrocytes in neurovascular coupling.


Sign in / Sign up

Export Citation Format

Share Document