scholarly journals Calcium Input Potentiates the Transforming Growth Factor (TGF)-β1-dependent Signaling to Promote the Export of Inorganic Pyrophosphate by Articular Chondrocyte

2011 ◽  
Vol 286 (22) ◽  
pp. 19215-19228 ◽  
Author(s):  
Frederic Cailotto ◽  
Pascal Reboul ◽  
Sylvie Sebillaud ◽  
Patrick Netter ◽  
Jean-Yves Jouzeau ◽  
...  

Transforming growth factor (TGF)-β1 stimulates extracellular PPi (ePPi) generation and promotes chondrocalcinosis, which also occurs secondary to hyperparathyroidism-induced hypercalcemia. We previously demonstrated that ANK was up-regulated by TGF-β1 activation of ERK1/2 and Ca2+-dependent protein kinase C (PKCα). Thus, we investigated mechanisms by which calcium could affect ePPi metabolism, especially its main regulating proteins ANK and PC-1 (plasma cell membrane glycoprotein-1). We stimulated articular chondrocytes with TGF-β1 under extracellular (eCa2+) or cytosolic Ca2+ (cCa2+) modulations. We studied ANK, PC-1 expression (quantitative RT-PCR, Western blotting), ePPi levels (radiometric assay), and cCa2+ input (fluorescent probe). Voltage-operated Ca2+-channels (VOC) and signaling pathways involved were investigated with selective inhibitors. Finally, Ank promoter activity was evaluated (gene reporter). TGF-β1 elevated cCa2+ and ePPi levels (by up-regulating Ank and PC-1 mRNA/proteins) in an eCa2+ dose-dependent manner. TGF-β1 effects were suppressed by cCa2+ chelation or L- and T-VOC blockade while being mostly reproduced by ionomycin. In the same experimental conditions, the activation of Ras, the phosphorylation of ERK1/2 and PKCα, and the stimulation of Ank promoter activity were affected similarly. Activation of SP1 (specific protein 1) and ELK-1 (Ets-like protein-1) transcription factors supported the regulatory role of Ca2+. SP1 or ELK-1 overexpression or blockade experiments demonstrated a major contribution of ELK-1, which acted synergistically with SP1 to activate Ank promoter in response to TGF-β1. TGF-β1 promotes input of eCa2+ through opening of L- and T-VOCs, to potentiate ERK1/2 and PKCα signaling cascades, resulting in an enhanced activation of Ank promoter and ePPi production in chondrocyte.

1999 ◽  
Vol 8 (4-5) ◽  
pp. 205-209 ◽  
Author(s):  
G. Valacchi ◽  
Velio Bocci

In a previous work we have shown that heparin, in the presence of ozone (O3), promotes a dose-dependent platelet aggregation, while after Ca2+chelation with citrate, platelet aggregation is almost negligible. These results led us to think that aggregation may enhance the release of platelet components. We have here shown that indeed significantly higher amount of platelet-derived growth factor (PDGF), transforming growth factor β1 (TGF-β1) and interleukin-8(IL-8) are released in a dose-dependent manner after ozonation of heparinised platelet-rich plasma samples. These findings may explain the enhanced healing of torpid ulcers in patients with chronic limbischemia treated with O3autohaemoteraphy (O3-AHT).


2007 ◽  
Vol 293 (1) ◽  
pp. L245-L253 ◽  
Author(s):  
Shaoping Xie ◽  
Maria B. Sukkar ◽  
Razao Issa ◽  
Nadia M. Khorasani ◽  
Kian Fan Chung

Airway smooth muscle (ASM) hyperplasia is a characteristic feature of the asthmatic airway, but the underlying mechanisms that induce ASM hyperplasia remain unknown. Because transforming growth factor (TGF)-β is a potent regulator of ASM cell proliferation, we determined its expression and mitogenic signaling pathways in ASM cells. We obtained ASM cells by laser capture microdissection of bronchial biopsies and found that ASM cells from asthmatic patients expressed TGF-β1 mRNA and protein to a greater extent than nonasthmatic individuals using real-time RT-PCR and immunohistochemistry, respectively. TGF-β1 stimulated the growth of nonconfluent and confluent ASM cells either in the presence or absence of serum in a time- and concentration-dependent manner. The mitogenic activity of TGF-β1 on ASM cells was inhibited by selective inhibitors of TGF-β receptor I kinase (SD-208), phosphatidylinositol 3-kinase (PI3K, LY-294002), ERK (PD-98059), JNK (SP-600125), and NF-κB (AS-602868). On the other hand, p38 MAPK inhibitor (SB-203580) augmented TGF-β1-induced proliferation. To study role of the Smads, we transduced ASM cells with an adenovirus vector-expressing Smad4, Smad7, or dominant-negative Smad3 and found no involvement of these Smads in TGF-β1-induced proliferation. Dexamethasone caused a dose-dependent inhibition in TGF-β1-induced proliferation. Our findings suggest that TGF-β1 may act in an autocrine fashion to induce ASM hyperplasia, mediated by its receptor and several kinases including PI3K, ERK, and JNK, whereas p38 MAPK is a negative regulator. NF-κB is also involved in the TGF-β1 mitogenic signaling, but Smad pathway does not appear important.


Blood ◽  
2001 ◽  
Vol 98 (10) ◽  
pp. 2992-2998 ◽  
Author(s):  
Ross D. Brown ◽  
Belinda Pope ◽  
Allan Murray ◽  
Warren Esdale ◽  
Daniel M. Sze ◽  
...  

Abstract Limited response to idiotype vaccination in patients with myeloma suggests that there is a need to develop better immunotherapy strategies. It has been determined that the number of high-potency CMRF44+CD14−CD19−dendritic cells (DCs) in the blood of patients with myeloma (range, 0.03%-0.8% of mononuclear cells [MNCs]; n = 26) was not significantly different from that in controls (range, 0.05%-0.8% of MNCs; n = 13). Expression of the costimulatory molecules CD80 and CD86 on DCs from these patients (mean, 29%±17% of MNCs and 85%±10% of MNCs, respectively) was also normal (mean, 29%±17% and 86%±16% of MNCs, respectively). Up-regulation of CD80 expression in response to stimulation by human (hu)CD40LT + interleukin (IL)-2 was significantly reduced on the DCs of patients with myeloma during stable disease (n = 9) and was absent during progressive stages (n = 7) of disease. Similar effects were seen on B cells but not on monocytes of the same group of patients. CD86 expression on DCs was high before (86%) and after (89%) stimulation. Inhibition of CD80 up-regulation was neutralized by either anti–transforming growth factor (TGF)–β1 or anti–IL-10. Up-regulation of CD80 on DCs of controls was inhibited by rTGF-β1 in a dose-dependent manner. Serum TGF-β1 and IL-10 levels were normal in most patients studied. Cytoplasmic TGF-β1 was increased in plasma cells during progressive disease. Thus patients with myeloma have normal numbers of DCs, but CD80 expression may fail to be up-regulated in the presence of huCD40LT because of tumor-derived TGF-β1 or IL-10. Autologous high-potency DCs may have to be tested for CD80 up-regulation and biologically modified ex vivo before idiotype priming for immunotherapy.


2019 ◽  
Author(s):  
Dong Hoon Suh ◽  
Sunray Lee ◽  
Hyun-Sook Park ◽  
Noh Hyun Park

AbstractThis study was performed to evaluate the anticancer effects of tolerable doses of metformin with or without medroxyprogesterone (MPA) in endometrial cancer cells. Cell viability, cell invasion, and levels of matrix metallopeptidase (MMP) and transforming growth factor (TGF)-β1 were analyzed using three human endometrial adenocarcinoma cell lines (Ishikawa, KLE, and USPC) after treatment with different dose combinations of MPA (0, 10 μM) and metformin (0, 100, 1000 μM). Combining metformin (0, 100, 1000 μM) and 10 μM MPA induced significantly decreased cell viability in a time- and dose-dependent manner in Ishikawa cells, but not in KLE and USPC cells. There was no dose- or time-dependent cell growth inhibition, or positive western blot results for the expression of progesterone receptors and phospho-AMPKa, following treatment with any combination of metformin (0, 100, 1000 μM) and 10 μM MPA in KLE and USPC cells. In KLE cells, metformin treatment alone significantly inhibited cell invasion in a dose-dependent manner (1.31±0.05, 0.94±0.04, 0.83±0.05 at 0, 100 μM, 1000 μM, respectively; p<0.0005). The inhibitory effect of metformin was reversed to create a stimulating effect when metformin was combined with 10 μM MPA (1.10±0.05, 1.42±0.18, 1.41±0.26 at 0, 100, 1000 μM, respectively; p<0.005). MMP-9 and TGF-β1 showed similar trends in terms of cell invasion in KLE cells. In conclusion, the anti-invasive effect of metformin in KLE cells was completely reversed to the state of no treatment by the addition of MPA; this might be mediated through MMP-9 and TGF-β1. Our study suggests the possibility of these combinations doing harm, rather than good, under some conditions.


Endocrinology ◽  
1998 ◽  
Vol 139 (5) ◽  
pp. 2356-2362 ◽  
Author(s):  
Damir Sunic ◽  
Julian D. McNeil ◽  
Timothy E. Rayner ◽  
Dennis L. Andress ◽  
David A. Belford

Abstract Insulin-like growth factors (IGFs) contribute to the maintenance of the cartilage matrix by stimulating proteoglycan synthesis. In contrast, interleukin-1 (IL-1), an inflammatory cytokine, suppresses the synthesis of proteoglycans. In pathological conditions the chondrocytes’ responsiveness to IGF-I is decreased, and elevated levels of IGF-binding proteins (IGFBPs) have been implicated as a possible cause. The aim of this study was to investigate the effects of IGF-I and IL-1 on IGFBP production by ovine articular chondrocytes (OAC) and the roles of these IGFBPs in the regulation of proteoglycan synthesis. As revealed by Western ligand and immunoblotting, OACs secreted IGFBP-2 and a 24-kDa IGFBP in culture medium under basal conditions. Exposure of the cells to IGF-I for 48 h resulted in the appearance of IGFBP-5 in the medium. Des(1–3)IGF-I, an IGF-I analog with reduced affinity for IGFBPs, also increased the level of IGFBP-5, but to a lesser extent than IGF-I, whereas LR3IGF-I, which has virtually no affinity for IGFBPs, had no effect on IGFBP-5. Furthermore, IGFBP-5 underwent a time-dependent limited proteolysis when incubated with OAC-conditioned medium, degrading into 22- and 16-kDa fragments. The degradation of IGFBP-5 was significantly inhibited by IGF-I, but not by des(1–3)IGF-I or LR3IGF-I. Basic fibroblast growth factor, transforming growth factor-β, and platelet-derived growth factor had no effect on OAC IGFBPs. However, IL-1α increased the IGFBP-5 level in a dose-dependent manner, showing maximum activity at 200 U/ml. Furthermore, IL-1α, but not IGF-I, induced IGFBP-5 messenger RNA expression, as assessed by Northern blot analysis. Coincubation of IGF-I with IL-1α resulted in a substantially increased IGFBP-5 protein level, suggesting a synergism between the mechanisms of action of these two factors. Des(1–3)IGF-I and LR3IGF-I were 10 times more potent than IGF-I in stimulating proteoglycan synthesis, indicating inhibition of IGF-I activity by endogenous IGFBPs. IL-1α reduced the IGF-I bioactivity, but had no effect on the activities of the IGF-I analogs, thus implying that locally produced IGFBPs, particularly IGFBP-5, which was substantially increased when IGF-I and IL-1α were coincubated, mediated the reduction of the IGF-I activity. Our results demonstrate that IGF-I and IL-1α synergistically increase the level of IGFBP-5 in OAC by inhibiting the proteolysis and stimulating the expression of IGFBP-5, respectively. Furthermore, the attenuation of IGF-I-stimulated proteoglycan synthesis by IL-1α in OAC appears to be mediated by chondrocyte IGFBPs. We conclude that locally produced IGFBPs, in particular IGFBP-5, may play a critical role in the regulation of cartilage matrix degradation in inflammatory and degenerative arthritides.


2012 ◽  
Vol 3 (1) ◽  
pp. 99-106 ◽  
Author(s):  
Nanako Kawaguchi

AbstractHeart failure is a leading cause of death worldwide. Studies of stem cell biology are essential for developing efficient treatments. Recently, we established and characterized c-kit-positive cardiac stem cells from the adult rat heart. Using a MethoCult culture system with a methyl-cellulose-based medium, stem-like left-atrium-derived pluripotent cells could be regulated to differentiate into skeletal/cardiac myocytes or adipocytes with almost 100% purity. Microarray and pathway analyses of these cells showed that transforming growth factor-β1 (TGF-β1) and noggin were significantly involved in the differentiation switch. Furthermore, TGF-β1 may act as a regulator for this switch because it simultaneously inhibits adipogenesis and activates myogenesis in a dose-dependent manner. However, the effect of TGF-β varies with developmental stage, dosage, and timing of treatment. In the present review, the findings of recent studies, in particular the use of c-kit-positive cardiac stem cells, are discussed. The effects of the TGF-β superfamily on differentiation, especially on adipogenesis and/or myogenesis, have important implications for future regenerative medicine.


2003 ◽  
Vol 285 (3) ◽  
pp. G539-G546 ◽  
Author(s):  
Hong Shen ◽  
Guojiang Huang ◽  
Mohammed Hadi ◽  
Patrick Choy ◽  
Manna Zhang ◽  
...  

Smads are intracellular signaling molecules of the transforming growth factor-β (TGF-β) superfamily that play an important role in the activation of hepatic stellate cells (HSCs) and hepatic fibrosis. Excepting the regulation of Smad7, receptor-regulated Smad gene expression is still unclear. We employed rat HSCs to investigate the expression and regulation of the Smad1 gene, which is a bone morphogenetic protein (BMP) receptor-regulated Smad. We found that the expression and phosphorylation of Smad1 are increased during the activation of HSCs. Moreover, TGF-β significantly inhibits Smad1 gene expression in HSCs in a time- and dose-dependent manner. Furthermore, although both TGF-β1 and BMP2 stimulate the activation of HSCs, they have different effects on HSC proliferation. In conclusion, Smad1 expression and phosphorylation are increased during the activation of HSCs and TGF-β1 significantly inhibits the expression of the Smad1 gene.


2002 ◽  
Vol 277 (46) ◽  
pp. 43903-43917 ◽  
Author(s):  
Christos Chadjichristos ◽  
Chafik Ghayor ◽  
Jean-François Herrouin ◽  
Leena Ala-Kokko ◽  
Gunthram Suske ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document