scholarly journals Prefoldin Subunits Are Protected from Ubiquitin-Proteasome System-mediated Degradation by Forming Complex with Other Constituent Subunits

2011 ◽  
Vol 286 (22) ◽  
pp. 19191-19203 ◽  
Author(s):  
Makoto Miyazawa ◽  
Erika Tashiro ◽  
Hirotake Kitaura ◽  
Hiroshi Maita ◽  
Hiroo Suto ◽  
...  

The molecular chaperone prefoldin (PFD) is a complex comprised of six different subunits, PFD1-PFD6, and delivers newly synthesized unfolded proteins to cytosolic chaperonin TRiC/CCT to facilitate the folding of proteins. PFD subunits also have functions different from the function of the PFD complex. We previously identified MM-1α/PFD5 as a novel c-Myc-binding protein and found that MM-1α suppresses transformation activity of c-Myc. However, it remains unclear how cells regulate protein levels of individual subunits and what mechanisms alter the ratio of their activities between subunits and their complex. In this study, we found that knockdown of one subunit decreased protein levels of other subunits and that transfection of five subunits other than MM-1α into cells increased the level of endogenous MM-1α. We also found that treatment of cells with MG132, a proteasome inhibitor, increased the level of transfected/overexpressed MM-1α but not that of endogenous MM-1α, indicating that overexpressed MM-1α, but not endogenous MM-1α, was degraded by the ubiquitin proteasome system (UPS). Experiments using other PFD subunits showed that the UPS degraded a monomer of PFD subunits, though extents of degradation varied among subunits. Furthermore, the level of one subunit was increased after co-transfection with the respective subunit, indicating that there are specific combinations between subunits to be stabilized. These results suggest mutual regulation of protein levels among PFD subunits and show how individual subunits form the PFD complex without degradation.

2009 ◽  
Vol 284 (24) ◽  
pp. 16135-16145 ◽  
Author(s):  
Vladimir Stanišić ◽  
Anna Malovannaya ◽  
Jun Qin ◽  
David M. Lonard ◽  
Bert W. O'Malley

Estrogen receptor (ER) α is an essential component in human physiology and is a key factor involved in the development of breast and endometrial cancers. ERα protein levels and transcriptional activity are tightly controlled by the ubiquitin proteasome system. Deubiquitinating enzymes, a class of proteases capable of removing ubiquitin from proteins, are increasingly being seen as key modulators of the ubiquitin proteasome system, regulating protein stability and other functions by countering the actions of ubiquitin ligases. Using mass spectrometry analysis of an ERα protein complex, we identified OTU domain-containing ubiquitin aldehyde-binding protein 1 (OTUB1) as a novel ERα-interacting protein capable of deubiquitinating ERα in cells and in vitro. We show that OTUB1 negatively regulates transcription mediated by ERα in transient reporter gene assays and transcription mediated by endogenous ERα in Ishikawa endometrial cancer cells. We also show that OTUB1 regulates the availability and functional activity of ERα in Ishikawa cells by affecting the transcription of the ERα gene and by stabilizing the ERα protein in the chromatin.


2019 ◽  
Vol 2019 ◽  
pp. 1-18
Author(s):  
I-Cheng Chen ◽  
Kuo-Hsuan Chang ◽  
Yi-Jing Chen ◽  
Yi-Chun Chen ◽  
Guey-Jen Lee-Chen ◽  
...  

Spinocerebellar ataxia type 3 (SCA3) is an autosomal dominant neurodegenerative disorder caused by a CAG repeat expansion within the ATXN3/MJD1 gene. The expanded CAG repeats encode a polyglutamine (polyQ) tract at the C-terminus of the ATXN3 protein. ATXN3 containing expanded polyQ forms aggregates, leading to subsequent cellular dysfunctions including an impaired ubiquitin-proteasome system (UPS). To investigate the pathogenesis of SCA3 and develop potential therapeutic strategies, we established induced pluripotent stem cell (iPSC) lines from SCA3 patients (SCA3-iPSC). Neurons derived from SCA3-iPSCs formed aggregates that are positive to the polyQ marker 1C2. Treatment with the proteasome inhibitor, MG132, on SCA3-iPSC-derived neurons downregulated proteasome activity, increased production of radical oxygen species (ROS), and upregulated the cleaved caspase 3 level and caspase 3 activity. This increased susceptibility to the proteasome inhibitor can be rescued by a Chinese herbal medicine (CHM) extract NH037 (from Pueraria lobata) and its constituent daidzein via upregulating proteasome activity and reducing protein ubiquitination, oxidative stress, cleaved caspase 3 level, and caspase 3 activity. Our results successfully recapitulate the key phenotypes of the neurons derived from SCA3 patients, as well as indicate the potential of NH037 and daidzein in the treatment for SCA3 patients.


Cells ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 40 ◽  
Author(s):  
Katarzyna Zientara-Rytter ◽  
Suresh Subramani

The ubiquitin-proteasome system (UPS) and autophagy are the two major intracellular protein quality control (PQC) pathways that are responsible for cellular proteostasis (homeostasis of the proteome) by ensuring the timely degradation of misfolded, damaged, and unwanted proteins. Ubiquitination serves as the degradation signal in both these systems, but substrates are precisely targeted to one or the other pathway. Determining how and when cells target specific proteins to these two alternative PQC pathways and control the crosstalk between them are topics of considerable interest. The ubiquitin (Ub) recognition code based on the type of Ub-linked chains on substrate proteins was believed to play a pivotal role in this process, but an increasing body of evidence indicates that the PQC pathway choice is also made based on other criteria. These include the oligomeric state of the Ub-binding protein shuttles, their conformation, protein modifications, and the presence of motifs that interact with ATG8/LC3/GABARAP (autophagy-related protein 8/microtubule-associated protein 1A/1B-light chain 3/GABA type A receptor-associated protein) protein family members. In this review, we summarize the current knowledge regarding the Ub recognition code that is bound by Ub-binding proteasomal and autophagic receptors. We also discuss how cells can modify substrate fate by modulating the structure, conformation, and physical properties of these receptors to affect their shuttling between both degradation pathways.


Blood ◽  
2007 ◽  
Vol 110 (9) ◽  
pp. 3128-3135 ◽  
Author(s):  
Jurgen A. F. Marteijn ◽  
Laurens T. van der Meer ◽  
Liesbeth van Emst ◽  
Simon van Reijmersdal ◽  
Willemijn Wissink ◽  
...  

Abstract Growth factor independence 1 (Gfi1) is a transcriptional repressor essential for the function and development of many different hematopoietic lineages. The Gfi1 protein expression is regulated by the ubiquitin-proteasome system. In granulocytes, Gfi1 is rapidly degraded by the proteasome, while it is more stable in monocytes. How the ubiquitination and degradation of Gfi1 is regulated is unclear. Here, we show that the ubiquitin ligase Triad1 interacts with the DNA-binding domain of Gfi1. Unexpectedly, we found that Triad1 inhibited Gfi1 ubiquitination, resulting in a prolonged half-life. Down-regulation of endogenous Triad1 by siRNAs resulted in increased Gfi1 ubiquitination. In U937 cells, Triad1 caused an increase in endogenous Gfi1 protein levels and slowed cell proliferation in a similar manner when Gfi1 itself was expressed. A Triad1 mutant that lacks the Gfi1-binding domain did not affect Gfi1 levels and proliferation. Because neither proteasome-ubiquitin nor Triad1 ubiquitin ligase activity was required for the inhibition of Gfi1 ubiquitination, these data suggest that Triad1 competes for Gfi1 binding with as yet to be identified E3 ubiquitin ligases that do mark Gfi1 for proteasomal degradation. The finetuning of Gfi1 protein levels regulated by Triad1 defines an unexpected role for this protein in hematopoiesis.


2006 ◽  
Vol 66 (7) ◽  
pp. 3754-3763 ◽  
Author(s):  
Martina Bazzaro ◽  
Michael K. Lee ◽  
Alessia Zoso ◽  
Wanda L.H. Stirling ◽  
Antonio Santillan ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Benxu Cheng ◽  
Pinki Anand ◽  
Anxiu Kuang ◽  
Feroz Akhtar ◽  
Virginia L. Scofield

Ubiquitin proteasome system (UPS) dysfunction has been implicated in the development of many neuronal disorders, including Parkinson’s disease (PD). Previous studies focused on individual neuroprotective agents and their respective abilities to prevent neurotoxicity following a variety of toxic insults. However, the effects of the antioxidant N-acetylcysteine (NAC) on proteasome impairment-induced apoptosis have not been well characterized in human neuronal cells. The aim of this study was to determine whether cotreatment of NAC and insulin-like growth factor-1 (IGF-1) efficiently protected against proteasome inhibitor-induced cytotoxicity in SH-SY5Y cells. Our results demonstrate that the proteasome inhibitor, MG132, initiates poly(ADP-ribose) polymerase (PARP) cleavage, caspase 3 activation, and nuclear condensation and fragmentation. In addition, MG132 treatment leads to endoplasmic reticulum (ER) stress and autophagy-mediated cell death. All of these events can be attenuated without obvious reduction of MG132 induced protein ubiquitination by first treating the cells with NAC and IGF-1 separately or simultaneously prior to exposure to MG132. Moreover, our data demonstrated that the combination of the two proved to be significantly more effective for neuronal protection. Therefore, we conclude that the simultaneous use of growth/neurotrophic factors and a free radical scavenger may increase overall protection against UPS dysfunction-mediated cytotoxicity and neurodegeneration.


Blood ◽  
2006 ◽  
Vol 109 (1) ◽  
pp. 100-108 ◽  
Author(s):  
Jurgen A. F. Marteijn ◽  
Laurens T. van der Meer ◽  
Liesbeth Van Emst ◽  
Theo de Witte ◽  
Joop H. Jansen ◽  
...  

Abstract Gfi1 is a transcriptional repressor essential during myeloid differentiation. Gfi1−/− mice exhibit a block in myeloid differentiation resulting in the accumulation of an immature myelo-monocytic cell population and the complete absence of mature neutrophils. Even though mRNA levels of Gfi1 appear to be very low in monocytes, Gfi1 might play a role in the monocytic lineage as Gfi1−/− mice exhibit diminished monocyte-derived dendritic cells and disturbed cytokine production by macrophages in response to LPS. We show here that Gfi1 protein levels are mainly regulated by the ubiquitin-proteasome system. Upon forced monocytic differentiation of U937 cells, Gfi1 mRNA levels dropped but protein levels increased due to diminished proteasomal turnover. Similarly, Gfi1 mRNA levels are low in primary monocytes whereas the protein is clearly detectable. Conversely, Gfi1 mRNA levels are high in granulocytes but the protein is swiftly degraded by the proteasome in these cells. Chromatin immunoprecipitation experiments showed that Gfi1 binds to the promoter of several granulocyte-specific genes in primary monocytes, including C/EBPα, neutrophil elastase, and Gfi1 itself. The binding of the repressor Gfi1 to these promoters correlated with low expression of these genes in monocytes compared with granulocytes. Our data fit a model in which Gfi1 protein levels are induced in primary monocytes, due to diminished proteasomal degradation, to repress genes that play a role in granulocytic differentiation.


2010 ◽  
Vol 2 ◽  
pp. CMT.S2889
Author(s):  
Klaus Podar ◽  
Kenneth C. Anderson

The ubiquitin-proteasome-degradation system plays a key role in multiple cellular functions. Its deregulation is associated with the initiation and progression of human diseases including not only solid and hematologic malignancies but also neurologic and autoimmune disorders. This article discusses several novel mechanistic aspects of the ubiquitin-proteasome system. Moreover, it focuses on the development, mechanisms of action, and clinical experience with Bortezomib, the first in-class-proteasome inhibitor to enter the clinics. Finally, it summarizes novel approaches to specifically target distinct components within the highly complex and dynamic ubiquitin-proteasome machinery to ultimately further increase drug activity, as well as reduce drug resistance and adverse side effects.


Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1308 ◽  
Author(s):  
Boris Margulis ◽  
Anna Tsimokha ◽  
Svetlana Zubova ◽  
Irina Guzhova

Throughout their life cycles, cells are subject to a variety of stresses that lead to a compromise between cell death and survival. Survival is partially provided by the cell proteostasis network, which consists of molecular chaperones, a ubiquitin-proteasome system of degradation and autophagy. The cooperation of these systems impacts the correct function of protein synthesis/modification/transport machinery starting from the adaption of nascent polypeptides to cellular overcrowding until the utilization of damaged or needless proteins. Eventually, aging cells, in parallel to the accumulation of flawed proteins, gradually lose their proteostasis mechanisms, and this loss leads to the degeneration of large cellular masses and to number of age-associated pathologies and ultimately death. In this review, we describe the function of proteostasis mechanisms with an emphasis on the possible associations between them.


Sign in / Sign up

Export Citation Format

Share Document