scholarly journals Nuclear Corepressors Mediate the Repression of Phospholipase A2 Group IIa Gene Transcription by Thyroid Hormone

2013 ◽  
Vol 288 (23) ◽  
pp. 16321-16333 ◽  
Author(s):  
Pragya Sharma ◽  
Shalini Thakran ◽  
Xiong Deng ◽  
Marshall B. Elam ◽  
Edwards A. Park

Secretory phospholipase A2 group IIa (PLA2g2a) is associated with inflammation, hyperlipidemia, and atherogenesis. Transcription of the PLA2g2a gene is induced by multiple cytokines. Here, we report the surprising observation that thyroid hormone (T3) inhibited PLA2g2a gene expression in human and rat hepatocytes as well as in rat liver. Moreover, T3 reduced the cytokine-mediated induction of PLA2g2a, suggesting that the thyroid status may modulate aspects of the inflammatory response. In an effort to dissect the mechanism of repression by T3, we cloned the PLA2g2a gene and identified a negative T3 response element in the promoter. This T3 receptor (TRβ)-binding site differed considerably from consensus T3 stimulatory elements. Using in vitro and in vivo binding assays, we found that TRβ bound directly to the PLA2g2a promoter as a heterodimer with the retinoid X receptor. Knockdown of nuclear corepressor or silencing mediator for retinoid and thyroid receptors by siRNA blocked the T3 inhibition of PLA2g2a. Using chromatin immunoprecipitation assays, we showed that nuclear corepressor and silencing mediator for retinoid and thyroid receptors were associated with the PLA2g2a gene in the presence of T3. In contrast with the established role of T3 to promote coactivator association with TRβ, our experiments demonstrate a novel inverse recruitment mechanism in which liganded TRβ recruits corepressors to inhibit PLA2g2a expression.

Microbiology ◽  
2010 ◽  
Vol 156 (12) ◽  
pp. 3635-3644 ◽  
Author(s):  
M. M. Harriott ◽  
E. A. Lilly ◽  
T. E. Rodriguez ◽  
P. L. Fidel ◽  
M. C. Noverr

Current understanding of resistance and susceptibility to vulvovaginal candidiasis challenges existing paradigms of host defence against fungal infection. While abiotic biofilm formation has a clearly established role during systemic Candida infections, it is not known whether C. albicans forms biofilms on the vaginal mucosa and the possible role of biofilms in disease. In vivo and ex vivo murine vaginitis models were employed to examine biofilm formation by scanning electron and confocal microscopy. C. albicans strains included 3153A (lab strain), DAY185 (parental control strain), and mutants defective in morphogenesis and/or biofilm formation in vitro (efg1/efg1 and bcr1/bcr1). Both 3153A and DAY815 formed biofilms on the vaginal mucosa in vivo and ex vivo as indicated by high fungal burden and microscopic analysis demonstrating typical biofilm architecture and presence of extracellular matrix (ECM) co-localized with the presence of fungi. In contrast, efg1/efg1 and bcr1/bcr1 mutant strains exhibited weak or no biofilm formation/ECM production in both models compared to wild-type strains and complemented mutants despite comparable colonization levels. These data show for the first time that C. albicans forms biofilms in vivo on vaginal epithelium, and that in vivo biotic biofilm formation requires regulators of biofilm formation (BCR1) and morphogenesis (EFG1).


Author(s):  
Yi Zhong ◽  
Ting-Ting Lu ◽  
Xiao-Mei Liu ◽  
Bing-Li Liu ◽  
Yun Hu ◽  
...  

Abstract Context Regulatory T cells (Tregs) dysfunction plays an important role in the development and progression of Graves’ disease (GD). Programmed cell death 1 (PD-1) prompts FoxP3 in Tregs expression and enhances the suppressive activity of Tregs. Whether abnormal expression of PD-1 contributes to the breakdown of Tregs and the role of thyroid hormone in the PD-1 expression of Tregs in GD remain substantially undefined. Objective To evaluate the role of PD-1 in Tregs function and triiodothyronine (T3) in PD-1 expression in patients with GD and mice treated with T3. Methods We recruited 30 patients with GD and 30 healthy donors. PD-1 expression in Tregs and Tregs function were determined. To evaluate the effects of thyroid hormone on PD-1 expression in Tregs, we used T3 for the treatment of human peripheral blood mononuclear cells (PBMCs). We then treated mice with T3 to confirm the effect of thyroid hormone on PD-1 expression in Tregs and Tregs function in vivo. Results PD-1 expression in Tregs and the suppressive function of Tregs significantly decreased in patients with GD. T3 reduced PD-1 expression in human Tregs in a concentration- and time-dependent manner in vitro. High levels of circulating T3 reduced PD-1 expression in Tregs, impaired Tregs function, and disrupted T-helper cell (Th1 and Th2) balance in mice treated with T3. Conclusions Tregs dysfunction in GD patients might be due to down-regulation of PD-1 expression in Tregs induced by high levels of serum T3.


2017 ◽  
Vol 37 (21) ◽  
Author(s):  
Peyman P. Aryanpur ◽  
Chelsea A. Regan ◽  
John M. Collins ◽  
Telsa M. Mittelmeier ◽  
David M. Renner ◽  
...  

ABSTRACT DEAD-box proteins (DBPs) are required in gene expression to facilitate changes to ribonucleoprotein complexes, but the cellular mechanisms and regulation of DBPs are not fully defined. Gle1 is a multifunctional regulator of DBPs with roles in mRNA export and translation. In translation, Gle1 modulates Ded1, a DBP required for initiation. However, DED1 overexpression causes defects, suggesting that Ded1 can promote or repress translation in different contexts. Here we show that GLE1 expression suppresses the repressive effects of DED1 in vivo and Gle1 counteracts Ded1 in translation assays in vitro. Furthermore, both Ded1 and Gle1 affect the assembly of preinitiation complexes. Through mutation analysis and binding assays, we show that Gle1 inhibits Ded1 by reducing its affinity for RNA. Our results are consistent with a model wherein active Ded1 promotes translation but inactive or excess Ded1 leads to translation repression. Gle1 can inhibit either role of Ded1, positioning it as a gatekeeper to optimize Ded1 activity to the appropriate level for translation. This study suggests a paradigm for finely controlling the activity of DEAD-box proteins to optimize their function in RNA-based processes. It also positions the versatile regulator Gle1 as a potential node for the coordination of different steps of gene expression.


2020 ◽  
Author(s):  
Jingang Ai ◽  
Guolin Tan ◽  
Tiansheng Wang ◽  
Wei Li ◽  
Ru Gao ◽  
...  

Aim: To investigate the role of LINC01160 in nasopharyngeal carcinoma (NPC). Materials & methods: Using NPC cells CNE-2 and HNE-2 in vitro, we performed quantitative PCR to determine mRNA expression and western blotting to determine protein expression. CCK-8, transwell, flow cytometry and wound healing assays were done to examine the function of LINC01160 and STAT1. Chromatin immunoprecipitation PCR (ChIP-PCR) confirmed that STAT1 combines with the LINC01160 promoter region. Xenograft experiments were used to verify the role of STAT1 and LINC01160 in vivo. Results: LINC01160 is upregulated in NPC and can promote a malignant cell phenotype. STAT1 is a transcription factor of LINC01160 and can promote a malignant cell phenotype through upregulating LINC01160 expression. Conclusion: STAT1 can promote a malignant cell phenotype by upregulating LINC01160.


2008 ◽  
Vol 28 (8) ◽  
pp. 2718-2731 ◽  
Author(s):  
Kavitha Sarma ◽  
Raphael Margueron ◽  
Alexey Ivanov ◽  
Vincenzo Pirrotta ◽  
Danny Reinberg

ABSTRACT The mammalian Polycomblike protein PHF1 was previously shown to interact with the Polycomb group (PcG) protein Ezh2, a histone methyltransferase whose activity is pivotal in sustaining gene repression during development and in adulthood. As Ezh2 is active only when part of the Polycomb Repressive Complexes (PRC2-PRC4), we examined the functional role of its interaction with PHF1. Chromatin immunoprecipitation experiments revealed that PHF1 resides along with Ezh2 at Ezh2-regulated genes such as the HoxA loci and the non-Hox MYT1 and WNT1 genes. Knockdown of PHF1 or of Ezh2 led to up-regulated HoxA gene expression. Interestingly, depletion of PHF1 did correlate with reduced occupancy of Bmi-1, a PRC1 component. As expected, knockdown of Ezh2 led to reduced levels of its catalytic products H3K27me2/H3K27me3. However, reduced levels of PHF1 also led to decreased global levels of H3K27me3. Notably, the levels of H3K27me3 decreased while those of H3K27me2 increased at the up-regulated HoxA loci tested. Consistent with this, the addition of PHF1 specifically stimulated the ability of Ezh2 to catalyze H3K27me3 but not H3K27me1/H3K27me2 in vitro. We conclude that PHF1 modulates the activity of Ezh2 in favor of the repressive H3K27me3 mark. Thus, we propose that PHF1 is a determinant in PcG-mediated gene repression.


1996 ◽  
Vol 134 (5) ◽  
pp. 633-638 ◽  
Author(s):  
ML Panno ◽  
D Sisci ◽  
M Salerno ◽  
M Lanzino ◽  
L Mauro ◽  
...  

Panno ML, Sisci D, Salerno M, Lanzino M, Mauro L, Morrone EG, Pezzi V, Palmero S. Fugassa E, Andò S. Effect of triiodothyronine administration on estrogen receptor contents in peripuberal Sertoli cells. Eur J Endocrinol 1996:134:633–8. ISSN 0804–4643 The effects of thyroid hormone on androgen metabolism in peripuberal Sertoli cells through the inhibition of estradiol production have been reported previously. It was our intention to investigate further the possible role of thyroid hormone on the interaction between testicular steroids and Sertoli cells by analyzing the effects of triiodothyronine (T3) on estrogen receptor content in 2-, 3- and 4week-old euthyroid rats. Triiodothyronine treatment (3 μg/100 body wt per day) given during the last week prior to sacrifice resulted in reduced testicular growth in 2-week-old animals. Sertoli cells from all groups were cultured initially under basal conditions for the first 24 h and subsequently in the presence of testosterone and/or T3 for the additional 24 h. The in vitro addition of T3 induced a decrease of estrogen receptors (ERs) in 2- and 3-week-old animals that appeared more pronounced especially in the presence of T3 and testosterone. When T3 was tested in vivo we noticed that the decrease of ER content was even greater in all three groups under the in vitro influence of both T3 and testosterone. In 3-week-old animals a simultaneous assay of ERs in both nuclear and cytoplasmic compartments was performed. The ER concentrations in the nucleus were closely related to those of the cytoplasm. The in vivo administration of T3 was responsible for a greater decrease of ERs in the nucleus than in the cytosol. On the basis of these results, and in agreement with our previous data, we speculate that the effect of T3 in the maturational events of Sertoli cells could involve both estradiol production and ER content. Sebastiano Andò Cattedra di Fisiopatologia Endocrina, Dipartimento di Biologia Cellulare, Università della Calabria, 87030 Arcavacata di Rende, Cosenza, Italy


2007 ◽  
Vol 292 (4) ◽  
pp. C1467-C1475 ◽  
Author(s):  
Giammarco Fava ◽  
Yoshiyuki Ueno ◽  
Shannon Glaser ◽  
Heather Francis ◽  
Sharon DeMorrow ◽  
...  

The role of the thyroid hormone agonist 3,3′,5 l-tri-iodothyronine (T3) on cholangiocytes is unknown. We evaluated the in vivo and in vitro effects of T3 on cholangiocyte proliferation of bile duct-ligated (BDL) rats. We assessed the expression of α1-, α2-, β1-, and β2-thyroid hormone receptors (THRs) by immunohistochemistry in liver sections from normal and BDL rats. BDL rats were treated with T3 (38.4 μg/day) or vehicle for 1 wk. We evaluated 1) biliary mass and apoptosis in liver sections and 2) proliferation in cholangiocytes. Serum-free T3 levels were measured by chemiluminescence. Purified BDL cholangiocytes were treated with 0.2% BSA or T3 (1 μM) in the absence/presence of U-73122 (PLC inhibitor) or BAPTA/AM (intracellular Ca2+ chelator) before measurement of PCNA protein expression by immunoblots. The in vitro effects of T3 (1 μM) on 1) cAMP, IP3, and Ca2+ levels and 2) the phosphorylation of Src Tyr139 and Tyr530 (that, together, regulate Src activity) and ERK1/2 of BDL cholangiocytes were also evaluated. α1-, α2-, β1-, and β2-THRs were expressed by bile ducts of normal and BDL rats. In vivo, T3 decreased cholangiocyte proliferation of BDL rats. In vitro, T3 inhibition of PCNA protein expression was blocked by U-73122 and BAPTA/AM. Furthermore, T3 1) increased IP3 and Ca2+ levels and 2) decreased Src and ERK1/2 phosphorylation of BDL cholangiocytes. T3 inhibits cholangiocyte proliferation of BDL rats by PLC/IP3/Ca2+-dependent decreased phosphorylation of Src/ERK1/2. Activation of the intracellular signals triggered by T3 may modulate the excess of cholangiocyte proliferation in liver diseases.


Oncogenesis ◽  
2020 ◽  
Vol 9 (10) ◽  
Author(s):  
Yue Chen ◽  
Meng-huan Wang ◽  
Jian-yun Zhu ◽  
Chun-feng Xie ◽  
Xiao-ting Li ◽  
...  

Abstract Cancer stem cells (CSCs) have an established role in cancer progression and therapeutic resistance. The p63 proteins are important transcription factors which belong to the p53 family, but their function and mechanism in CSCs remain elusive. Here, we investigated the role of TAp63α in colorectal CSCs and the effects of sulforaphane on TAp63α. We found that TAp63α was upregulated in spheres with stem cell properties compared to the parental cells. Overexpression of TAp63α promoted self-renewal capacity and enhanced CSC markers expression in colorectal sphere-forming cells. Furthermore, we showed that TAp63α directly bound to the promoter region of Lgr5 to enhance its expression and activate its downstream β-catenin pathway. Functional experiments revealed that sulforaphane suppressed the stemness of colorectal CSCs both in vitro and in vivo. Upregulation of TAp63α attenuated the inhibitory effect of sulforaphane on colorectal CSCs, indicating the role of TAp63α in sulforaphane suppression of the stemness in colorectal cancer. The present study elucidated for the first time that TAp63α promoted CSCs through targeting Lgr5/β-catenin axis and participated in sulforaphane inhibition of the stem cell properties in colorectal cancer.


Blood ◽  
2006 ◽  
Vol 108 (12) ◽  
pp. 3736-3738 ◽  
Author(s):  
Janine M. Lamonica ◽  
Christopher R. Vakoc ◽  
Gerd A. Blobel

Abstract All 3 hematopoietic GATA transcription factors, GATA-1, GATA-2, and GATA-3, are acetylated, although the in vivo role of this modification remains unclear. We examined the functions of an acetylation-defective mutant of GATA-1 in maturing erythroid cells. We found that removal of the acetylation sites in GATA-1 does not impair its nuclear localization, steady-state protein levels, or its ability to bind naked GATA elements in vitro. However, chromatin immunoprecipitation (ChIP) experiments revealed that mutant GATA-1 was dramatically impaired in binding to all examined cellular target sites in vivo, including genes that are normally activated and repressed by GATA-1. Together, these results suggest that acetylation regulates chromatin occupancy of GATA-1. These findings point to a novel function for transcription factor acetylation, perhaps by facilitating protein interactions required for stable association with chromatin templates in vivo.


Sign in / Sign up

Export Citation Format

Share Document