scholarly journals β-Amyloid Fibrils in Alzheimer Disease Are Not Inert When Bound to Copper Ions but Can Degrade Hydrogen Peroxide and Generate Reactive Oxygen Species

2014 ◽  
Vol 289 (17) ◽  
pp. 12052-12062 ◽  
Author(s):  
Jennifer Mayes ◽  
Claire Tinker-Mill ◽  
Oleg Kolosov ◽  
Hao Zhang ◽  
Brian J. Tabner ◽  
...  
2020 ◽  
Author(s):  
Liang Sun ◽  
Anuj K. Sharma ◽  
Byung-Hee Han ◽  
Liviu M. Mirica

<p>Alzheimer's disease (AD) is the most common neurodegenerative disorder, yet the cause and progression of this disorder are not completely understood. While the main hallmark of AD is the deposition of amyloid plaques consisting of the β-amyloid (Aβ) peptide, transition metal ions are also known to play a significant role in disease pathology by expediting the formation of neurotoxic soluble β-amyloid (Aβ) oligomers, reactive oxygen species (ROS), and oxidative stress. Thus, bifunctional metal chelators that can control these deleterious properties are highly desirable. Herein, we show that amentoflavone (AMF) – a natural biflavonoid compound, exhibits good metal-chelating properties, especially for chelating Cu<sup>2+</sup> with very high affinity (pCu<sub>7.4</sub> = 10.44). In addition, AMF binds to Aβ fibrils with a high affinity (<i>K<sub>i</sub></i> = 287 ± 20 nM) – as revealed by a competition thioflavin T (ThT) assay, and specifically labels the amyloid plaques <i>ex vivo</i> in the brain sections of transgenic AD mice – as confirmed via immunostaining with an Ab antibody. The effect of AMF on Aβ<sub>42</sub> aggregation and disaggregation of Aβ<sub>42</sub> fibrils was also investigated, to reveal that AMF can control the formation of neurotoxic soluble Aβ<sub>42</sub> oligomers, both in absence and presence of metal ions, and as confirmed via cell toxicity studies. Furthermore, an ascorbate consumption assay shows that AMF exhibits potent antioxidant properties and can chelate Cu<sup>2+</sup> and significantly diminish the Cu<sup>2+</sup>-ascorbate redox cycling and reactive oxygen species (ROS) formation. Overall, these studies strongly suggest that AMF acts as a bifunctional chelator that can interact with various Aβ aggregates and reduce their neurotoxicity, can also bind Cu<sup>2+</sup> and mediate its deleterious redox properties, and thus AMF has the potential to be a lead compound for further therapeutic agent development for AD. </p>


Author(s):  
Qian Wu ◽  
Youmei Li ◽  
Ying Li ◽  
Dong Wang ◽  
Ben Zhong Tang

Hydrogen peroxide (H2O2), as one kind of key reactive oxygen species (ROS), is mainly produced endogenously primarily in the mitochondria. The selective monitoring of H2O2 in living cells is of...


2021 ◽  
Author(s):  
Chunning Sun ◽  
Michael Gradzielski

Hydrogen peroxide (H2O2), a key reactive oxygen species, plays an important role in living organisms, industrial and environmental fields. Here, a non-contact upconversion nanosystem based on the excitation energy attenuation...


2018 ◽  
Vol 19 (12) ◽  
pp. 4078 ◽  
Author(s):  
Dahn Clemens ◽  
Michael Duryee ◽  
Cleofes Sarmiento ◽  
Andrew Chiou ◽  
Jacob McGowan ◽  
...  

Doxycycline (DOX), a derivative of tetracycline, is a broad-spectrum antibiotic that exhibits a number of therapeutic activities in addition to its antibacterial properties. For example, DOX has been used in the management of a number of diseases characterized by chronic inflammation. One potential mechanism by which DOX inhibits the progression of these diseases is by reducing oxidative stress, thereby inhibiting subsequent lipid peroxidation and inflammatory responses. Herein, we tested the hypothesis that DOX directly scavenges reactive oxygen species (ROS) and inhibits the formation of redox-mediated malondialdehyde-acetaldehyde (MAA) protein adducts. Using a cell-free system, we demonstrated that DOX scavenged reactive oxygen species (ROS) produced during the formation of MAA-adducts and inhibits the formation of MAA-protein adducts. To determine whether DOX scavenges specific ROS, we examined the ability of DOX to directly scavenge superoxide and hydrogen peroxide. Using electron paramagnetic resonance (EPR) spectroscopy, we found that DOX directly scavenged superoxide, but not hydrogen peroxide. Additionally, we found that DOX inhibits MAA-induced activation of Nrf2, a redox-sensitive transcription factor. Together, these findings demonstrate the under-recognized direct antioxidant property of DOX that may help to explain its therapeutic potential in the treatment of conditions characterized by chronic inflammation and increased oxidative stress.


2018 ◽  
Vol 20 (24) ◽  
pp. 7916-7920 ◽  
Author(s):  
Prerona Bora ◽  
Preeti Chauhan ◽  
Suman Manna ◽  
Harinath Chakrapani

2012 ◽  
Vol 48 (39) ◽  
pp. 4719 ◽  
Author(s):  
Manoj Kumar ◽  
Naresh Kumar ◽  
Vandana Bhalla ◽  
Parduman Raj Sharma ◽  
Yasrib Qurishi

Author(s):  
Dumitriţa RUGINǍ ◽  
Adela PINTEA ◽  
Raluca PÂRLOG ◽  
Andreea VARGA

Oxidative stress causes biological changes responsible for carcinogenesis and aging in human cells. The retinal pigmented epithelium is continuously exposed to oxidative stress. Therefore reactive oxygen species (ROS) and products of lipid peroxidation accumulate in RPE. Neutralization of ROS occurs in retina by the action of antioxidant defence systems. In the present study, the protective effect of caffeic acid (3,4-dihydroxy cinnamic acid), a dietary phenolic compound, has been examined in normal and in oxidative stress conditions (500 µM peroxide oxygen) in cultures human epithelial pigment retinal cells (Nowak, M. et al.). The cell viability, the antioxidant enzymes activity (CAT, GPx, SOD) and the level of intracellular reactive oxygen species (ROS) were determined. Exposure to l00 µM caffeic acid for 24 h induced cellular changes indicating the protective effect of caffeic acid in RPE cells. Caffeic acid did not show any cytotoxic effect at concentrations lower than 200 μM in culture medium. Treatment of RPE cells with caffeic acid causes an increase of catalase, glutathione peroxidase and superoxide dismutase activity, especially in cells treated with hydrogen peroxide. Caffeic acid causes a decrease of ROS level in cells treated with hydrogen peroxide. This study proved that caffeic acid or food that contain high levels of this phenolic acid may have beneficial effects in prevention of retinal diseases associated with oxidative stress by improving antioxidant defence systems.


Sign in / Sign up

Export Citation Format

Share Document