scholarly journals The Transcriptional Activator Mirk/Dyrk1B Is Sequestered by p38α/β MAP Kinase

2002 ◽  
Vol 277 (51) ◽  
pp. 49438-49445 ◽  
Author(s):  
Seunghwan Lim ◽  
Yonglong Zou ◽  
Eileen Friedman

Mirk/Dyrk1B protein kinase was shown in an earlier study to function as a transcriptional activator of HNF1α, which Mirk phosphorylates at Ser249within its CREB (cAMP-response element-binding protein)-binding protein (CBP) binding domain (1). The MAPK kinase MKK3 was also shown to activate Mirk as a protein kinase, implicating Mirk in the biological response to certain stress agents. Another MKK3 substrate, p38MAPK, is now shown to inhibit the function of Mirk as a transcriptional activator in a kinase-independent manner. Co-immunoprecipitation experiments demonstrated that kinase-inactive p38AF, as well as wild-type p38, sequestered Mirk and prevented its association with MKK3. Only the p38α and p38β isoforms, but not the γ or δ isoforms, complexed with Mirk. p38αMAPK blocked Mirk activation of HNF1α in a dose-dependent manner, with high levels of kinase-inactive p38αAF completely suppressing the activity of Mirk. Size fractionation by fast protein liquid chromatography on Superdex 200 demonstrated that Mirk is not found as a monomerin vivo, but is found within 150–700 kDa subnuclear complexes, which co-migrate with the nuclear body scaffolding protein PML. Endogenous Mirk, p38, and MKK3 co-migrate within 500–700-kDa protein complexes, which accumulate when nuclear export is blocked by leptomycin B. Stable overexpression of Mirk increases the fraction of Mirk protein and p38 protein within these 500–700 kDa complexes, suggesting that the complexes act as nuclear depots for Mirk and p38. Sequestration of Mirk by p38 may occur within these subnuclear complexes. Synchronization experiments demonstrated that Mirk levels fluctuate about 10-fold within the cell cycle, while p38 levels do not, leading to the speculation that endogenous p38 could only block Mirk function when Mirk levels were low in S phase and not when Mirk levels were elevated in G0/G1. These data suggest a novel cell cycle-dependent function for p38, suppression of the function of Mirk as a transcriptional activator only when cells are proliferating, and thus limiting Mirk function to growth-arrested cells.

2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Yan Zhang ◽  
Scot Matkovich ◽  
Abhinav Diwan ◽  
Min-Young Kang ◽  
Gerald W Dorn

Receptor-mediated activation of protein kinase (PK) C is a central pathway regulating cell growth, homeostasis, and programmed death. Recently, we showed that calpain-mediated proteolytic processing of PKC in ischemic myocardium activates PKC signaling in a receptor-independent manner by releasing a persistent and constitutively active free catalytic C-terminal fragment, PKCα-CT. This unregulated kinase provokes cardiomyopathy, but the mechanisms remain unclear. We examined hypothesis that PKCα-CT has transcriptional activity. Using immunoblot analysis and confocal microscopy, we found that PKCα-CT localized in part to nuclei and spontaneously induced cytosolic relocalization HDAC5 of the transcriptional regulator. Co- expression of calpain 1 with full length PKCα can generate PKCα-CT and produced the same HDAC5 cytosolic relocalization, whereas full length PKCα alone had no such effect. HDAC5 cytosolic relocalization induced by PKCα-CT was abolished by the protein kinase inhibitor GO6976, but not by PKD inhibitor CID 755673. The in vivo relevance of these findings was examined in transgenic mice expressing PKCα and PKCα-CT. To assess the consequence on gene expression, we performed global transcriptome profiling by Affymetrix microarrays and mRNA sequencing. The two techniques substantially agreed. Compared to control hearts, 621 mRNAs were regulated at least 1.3 fold in PKCα-CT hearts (P< 0.001), only 59 in full-length PKCα hearts. MEF2-dependent inflammatory pathway genes which are putative HDAC targets were upregulated in PKCα-CT heart: 15 MEF2 target mRNAs were upregulated in PKCα-CT hearts (p<0.001), only one in PKCα hearts. These results reveal that PKCα-CT is a potent regulator of pathological cardiac gene expression by localizing to nuclei and directly promoting nuclei-cytoplasmic shuttling of HDAC5. Receptor-independent effect of PKCα-CT and HDAC phosphorylation in ischemic hearts has broad ramifications for understanding and preventing the pathological transcriptional stress response.


2003 ◽  
Vol 373 (2) ◽  
pp. 571-581 ◽  
Author(s):  
Angie F. KIRWAN ◽  
Ashley C. BIBBY ◽  
Thierry MVILONGO ◽  
Heimo RIEDEL ◽  
Thomas BURKE ◽  
...  

The N-terminal pseudosubstrate site within the protein kinase Cα (PKCα)-regulatory domain has long been regarded as the major determinant for autoinhibition of catalytic domain activity. Previously, we observed that the PKC-inhibitory capacity of the human PKCα-regulatory domain was only reduced partially on removal of the pseudosubstrate sequence [Parissenti, Kirwan, Kim, Colantonio and Schimmer (1998) J. Biol. Chem. 273, 8940–8945]. This finding suggested that one or more additional region(s) contributes to the inhibition of catalytic domain activity. To assess this hypothesis, we first examined the PKC-inhibitory capacity of a smaller fragment of the PKCα-regulatory domain consisting of the C1a, C1b and V2 regions [GST-Rα39–177: this protein contained the full regulatory domain of human PKCα fused to glutathione S-transferase (GST), but lacked amino acids 1–38 (including the pseudosubstrate sequence) and amino acids 178–270 (including the C2 region)]. GST-Rα39–177 significantly inhibited PKC in a phorbol-independent manner and could not bind the peptide substrate used in our assays. These results suggested that a region within C1/V2 directly inhibits catalytic domain activity. Providing further in vivo support for this hypothesis, we found that expression of N-terminally truncated pseudosubstrate-less bovine PKCα holoenzymes in yeast was capable of inhibiting cell growth in a phorbol-dependent manner. This suggested that additional autoinhibitory force(s) remained within the truncated holoenzymes that could be relieved by phorbol ester. Using tandem PCR-mediated mutagenesis, we observed that mutation of amino acids 33–86 within GST-Rα39–177 dramatically reduced its PKC-inhibitory capacity when protamine was used as substrate. Mutagenesis of a broad range of sequences within C2 (amino acids 159–242) also significantly reduced PKC-inhibitory capacity. Taken together, these observations support strongly the existence of multiple regions within the PKCα-regulatory domain that play a direct role in the inhibition of catalytic domain activity.


2010 ◽  
Vol 17 (2) ◽  
pp. 293-302 ◽  
Author(s):  
Vladislava Paharkova-Vatchkova ◽  
Kuk-Wha Lee

Tumor suppression by IGF-binding protein 3 (IGFBP3) may occur in an IGF-independent manner, in addition to its role as a regulator of IGF bioavailability. After secretion, IGFBP3 is internalized, rapidly localized to the nucleus, and is later detected in the cytoplasm. We identified a putative nuclear export sequence (NES) in IGFBP3 between amino acids 217 and 228, analogous to the leucine-rich NES sequence of p53 and HIV Rev. Mutation of the NES prevents nucleocytoplasmic shuttling of IGFBP3 and blocks its ability to induce apoptosis. Targeting of IGFBP3 to the mitochondria and endoplasmic reticulum (ER) was confirmed by co-localization with organelle markers using fluorescence confocal microscopy and subcellular fractionation. Mitochondrial targeting was also demonstrated in vivo in IGFBP3-treated prostate cancer xenografts. These results show that IGFBP3 shuttles from the nucleus to the mitochondria and ER, and that nuclear export is essential for its effects on prostate cancer apoptosis.


2001 ◽  
Vol 12 (6) ◽  
pp. 1645-1669 ◽  
Author(s):  
Victor J. Cid ◽  
Mark J. Shulewitz ◽  
Kent L. McDonald ◽  
Jeremy Thorner

In Saccharomyces cerevisiae, entry into mitosis requires activation of the cyclin-dependent kinase Cdc28 in its cyclin B (Clb)-associated form. Clb-bound Cdc28 is susceptible to inhibitory tyrosine phosphorylation by Swe1 protein kinase. Swe1 is itself negatively regulated by Hsl1, a Nim1-related protein kinase, and by Hsl7, a presumptive protein-arginine methyltransferase. In vivo all three proteins localize to the bud neck in a septin-dependent manner, consistent with our previous proposal that formation of Hsl1-Hsl7-Swe1 complexes constitutes a checkpoint that monitors septin assembly. We show here that Hsl7 is phosphorylated by Hsl1 in immune-complex kinase assays and can physically associate in vitro with either Hsl1 or Swe1 in the absence of any other yeast proteins. With the use of both the two-hybrid method and in vitro binding assays, we found that Hsl7 contains distinct binding sites for Hsl1 and Swe1. A differential interaction trap approach was used to isolate four single-site substitution mutations in Hsl7, which cluster within a discrete region of its N-terminal domain, that are specifically defective in binding Hsl1. When expressed in hsl7Δ cells, each of these Hsl7 point mutants is unable to localize at the bud neck and cannot mediate down-regulation of Swe1, but retains other functions of Hsl7, including oligomerization and association with Swe1. GFP-fusions of these Hsl1-binding defective Hsl7 proteins localize as a bright perinuclear dot, but never localize to the bud neck; likewise, inhsl1Δ cells, a GFP-fusion to wild-type Hsl7 or native Hsl7 localizes to this dot. Cell synchronization studies showed that, normally, Hsl7 localizes to the dot, but only in cells in the G1 phase of the cell cycle. Immunofluorescence analysis and immunoelectron microscopy established that the dot corresponds to the outer plaque of the spindle pole body (SPB). These data demonstrate that association between Hsl1 and Hsl7 at the bud neck is required to alleviate Swe1-imposed G2-M delay. Hsl7 localization at the SPB during G1 may play some additional role in fine-tuning the coordination between nuclear and cortical events before mitosis.


2005 ◽  
Vol 25 (24) ◽  
pp. 10695-10710 ◽  
Author(s):  
Pradeep K. Pandey ◽  
T. S. Udayakumar ◽  
Xinjie Lin ◽  
Dipali Sharma ◽  
Paul S. Shapiro ◽  
...  

ABSTRACT The TRAP/Mediator coactivator complex serves as a molecular bridge between gene-specific activators and RNA polymerase II. TRAP220/Med1 is a key component of TRAP/Mediator that targets the complex to nuclear hormone receptors and other types of activators. We show here that human TRAP220/Med1 is a specific substrate for extracellular signal-regulated kinase (ERK) of the mitogen-activated protein kinase (MAPK) family. We demonstrate that ERK phosphorylates TRAP220/Med1 in vivo at two specific sites: threonine 1032 and threonine 1457. Importantly, we found that ERK phosphorylation significantly increases the stability and half-life of TRAP220/Med1 in vivo and correlates with increased thyroid hormone receptor-dependent transcription. Furthermore, ERK phosphorylates TRAP220/Med1 in a cell cycle-dependent manner, resulting in peak levels of expression during the G2/M phase of the cell cycle. ERK phosphorylation of ectopic TRAP220/Med1 also triggered shuttling into the nucleolus, thus suggesting that ERK may regulate TRAP220/Med1 subnuclear localization. Finally, we observed that ERK phosphorylation of TRAP220/Med1 stimulates its intrinsic transcriptional coactivation activity. We propose that ERK-mediated phosphorylation is a regulatory mechanism that controls TRAP220/Med1 expression levels and modulates its functional activity.


2004 ◽  
Vol 15 (2) ◽  
pp. 481-496 ◽  
Author(s):  
Josefa Andrade ◽  
Hu Zhao ◽  
Brian Titus ◽  
Sandra Timm Pearce ◽  
Margarida Barroso

We have reported that p22, an N-myristoylated EF-hand Ca2+-binding protein, associates with microtubules and plays a role in membrane trafficking. Here, we show that p22 also associates with membranes of the early secretory pathway membranes, in particular endoplasmic reticulum (ER). On binding of Ca2+, p22's ability to associate with membranes increases in an N-myristoylation-dependent manner, which is suggestive of a nonclassical Ca2+-myristoyl switch mechanism. To address the intracellular functions of p22, a digitonin-based “bulk microinjection” assay was developed to load cells with anti-p22, wild-type, or mutant p22 proteins. Antibodies against a p22 peptide induce microtubule depolymerization and ER fragmentation; this antibody-mediated effect is overcome by preincubation with the respective p22 peptide. In contrast, N-myristoylated p22 induces the formation of microtubule bundles, the accumulation of ER structures along the bundles as well as an increase in ER network formation. An N-myristoylated Ca2+-binding p22 mutant, which is unable to undergo Ca2+-mediated conformational changes, induces microtubule bundling and accumulation of ER structures along the bundles but does not increase ER network formation. Together, these data strongly suggest that p22 modulates the organization and dynamics of microtubule cytoskeleton in a Ca2+-independent manner and affects ER network assembly in a Ca2+-dependent manner.


1998 ◽  
Vol 111 (5) ◽  
pp. 557-572 ◽  
Author(s):  
C. Roghi ◽  
R. Giet ◽  
R. Uzbekov ◽  
N. Morin ◽  
I. Chartrain ◽  
...  

By differential screening of a Xenopus laevis egg cDNA library, we have isolated a 2,111 bp cDNA which corresponds to a maternal mRNA specifically deadenylated after fertilisation. This cDNA, called Eg2, encodes a 407 amino acid protein kinase. The pEg2 sequence shows significant identity with members of a new protein kinase sub-family which includes Aurora from Drosophila and Ipl1 (increase in ploidy-1) from budding yeast, enzymes involved in centrosome migration and chromosome segregation, respectively. A single 46 kDa polypeptide, which corresponds to the deduced molecular mass of pEg2, is immunodetected in Xenopus oocyte and egg extracts, as well as in lysates of Xenopus XL2 cultured cells. In XL2 cells, pEg2 is immunodetected only in S, G2 and M phases of the cell cycle, where it always localises to the centrosomal region of the cell. In addition, pEg2 ‘invades’ the microtubules at the poles of the mitotic spindle in metaphase and anaphase. Immunoelectron microscopy experiments show that pEg2 is located precisely around the pericentriolar material in prophase and on the spindle microtubules in anaphase. We also demonstrate that pEg2 binds directly to taxol stabilised microtubules in vitro. In addition, we show that the presence of microtubules during mitosis is not necessary for an association between pEg2 and the centrosome. Finally we show that a catalytically inactive pEg2 kinase stops the assembly of bipolar mitotic spindles in Xenopus egg extracts.


2000 ◽  
Vol 20 (8) ◽  
pp. 2676-2686 ◽  
Author(s):  
Andrew W. Snowden ◽  
Lisa A. Anderson ◽  
Gill A. Webster ◽  
Neil D. Perkins

ABSTRACT The transcriptional coactivators p300 and CREB binding protein (CBP) are important regulators of the cell cycle, differentiation, and tumorigenesis. Both p300 and CBP are targeted by viral oncoproteins, are mutated in certain forms of cancer, are phosphorylated in a cell cycle-dependent manner, interact with transcription factors such as p53 and E2F, and can be found complexed with cyclinE-Cdk2 in vivo. Moreover, p300-deficient cells show defects in proliferation. Here we demonstrate that transcriptional activation by both p300 and CBP is stimulated by coexpression of the cyclin-dependent kinase inhibitor p21WAF/CIP1. Significantly this stimulation is independent of both the inherent histone acetyltransferase (HAT) activity of p300 and CBP and of the previously reported carboxyl-terminal binding site for cyclinE-Cdk2. Rather, we describe a previously uncharacterized transcriptional repression domain (CRD1) within p300. p300 transactivation is stimulated through derepression of CRD1 by p21. Significantly p21 regulation of CRD1 is dependent on the nature of the core promoter. We suggest that CRD1 provides a novel mechanism through which p300 and CBP can switch activities between the promoters of genes that stimulate growth and those that enhance cell cycle arrest.


2021 ◽  
Vol 8 ◽  
Author(s):  
An Liu ◽  
Wenyuan Shi ◽  
Dongdong Lin ◽  
Haihui Ye

C-type allatostatins (C-type ASTs) are a family of structurally related neuropeptides found in a wide range of insects and crustaceans. To date, the C-type allatostatin receptor in crustaceans has not been deorphaned, and little is known about its physiological functions. In this study, we aimed to functionally define a C-type ASTs receptor in the mud crab, Scylla paramamosian. We showed that C-type ASTs receptor can be activated by ScypaAST-C peptide in a dose-independent manner and by ScypaAST-CCC peptide in a dose-dependent manner with an IC50 value of 6.683 nM. Subsequently, in vivo and in vitro experiments were performed to investigate the potential roles of ScypaAST-C and ScypaAST-CCC peptides in the regulation of ecdysone (20E) and methyl farnesoate (MF) biosynthesis. The results indicated that ScypaAST-C inhibited biosynthesis of 20E in the Y-organ, whereas ScypaAST-CCC had no effect on the production of 20E. In addition, qRT-PCR showed that both ScypaAST-C and ScypaAST-CCC significantly decreased the level of expression of the MF biosynthetic enzyme gene in the mandibular organ, suggesting that the two neuropeptides have a negative effect on the MF biosynthesis in mandibular organs. In conclusion, this study provided new insight into the physiological roles of AST-C in inhibiting ecdysone biosynthesis. Furthermore, it was revealed that AST-C family peptides might inhibit MF biosynthesis in crustaceans.


2000 ◽  
Vol 151 (4) ◽  
pp. 763-778 ◽  
Author(s):  
Mark R. Frey ◽  
Jennifer A. Clark ◽  
Olga Leontieva ◽  
Joshua M. Uronis ◽  
Adrian R. Black ◽  
...  

Members of the protein kinase C (PKC) family of signal transduction molecules have been widely implicated in regulation of cell growth and differentiation, although the underlying molecular mechanisms involved remain poorly defined. Using combined in vitro and in vivo intestinal epithelial model systems, we demonstrate that PKC signaling can trigger a coordinated program of molecular events leading to cell cycle withdrawal into G0. PKC activation in the IEC-18 intestinal crypt cell line resulted in rapid downregulation of D-type cyclins and differential induction of p21waf1/cip1 and p27kip1, thus targeting all of the major G1/S cyclin-dependent kinase complexes. These events were associated with coordinated alterations in expression and phosphorylation of the pocket proteins p107, pRb, and p130 that drive cells to exit the cell cycle into G0 as indicated by concomitant downregulation of the DNA licensing factor cdc6. Manipulation of PKC isozyme levels in IEC-18 cells demonstrated that PKCα alone can trigger hallmark events of cell cycle withdrawal in intestinal epithelial cells. Notably, analysis of the developmental control of cell cycle regulatory molecules along the crypt–villus axis revealed that PKCα activation is appropriately positioned within intestinal crypts to trigger this program of cell cycle exit–specific events in situ. Together, these data point to PKCα as a key regulator of cell cycle withdrawal in the intestinal epithelium.


Sign in / Sign up

Export Citation Format

Share Document