scholarly journals Targeting mitophagy in Parkinson's disease

2020 ◽  
pp. jbc.REV120.014294
Author(s):  
Emily H Clark ◽  
Aurelio Vázquez de la Torre ◽  
Tamaki Hoshikawa ◽  
Thomas Briston

The genetics and pathophysiology of Parkinson’s disease (PD) strongly implicate mitochondria in disease aetiology. Elegant studies over the last two decades have elucidated complex molecular signalling governing the identification and removal of dysfunctional mitochondria from the cell, a process of mitochondrial quality control known as mitophagy. Mitochondrial deficits and specifically reduced mitophagy are evident in both sporadic and familial PD. Mendelian genetics attributes loss-of-function mutations in key mitophagy regulators PINK1 and Parkin to early-onset PD. Pharmacologically enhancing mitophagy and accelerating the removal of damaged mitochondria are of interest for developing a disease-modifying PD therapeutic. However, despite significant understanding of both PINK1/Parkin-dependent and -independent mitochondrial quality control pathways, the therapeutic potential of targeting mitophagy remains to be fully explored. Here, we provide a summary of the genetic evidence supporting the role for mitophagy-failure as a pathogenic mechanism in PD. We assess the tractability of mitophagy pathways and prospects for drug discovery and consider intervention points for mitophagy enhancement. We explore the numerous hit molecules beginning to emerge from high-content/high-throughput screening as well as the biochemical and phenotypic assays that enabled these screens. The chemical and biological properties of these reference compounds suggest many could be used to interrogate and perturb mitochondrial biology to validate promising drug targets. Finally, we address key considerations and challenges in achieving pre-clinical proof-of-concept, including in vivo mitophagy reporter methodologies and disease models, as well as patient stratification and biomarker development for mitochondrial forms of the disease.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Emilie Hollville ◽  
Valerie Joers ◽  
Ayumi Nakamura ◽  
Vijay Swahari ◽  
Malú G. Tansey ◽  
...  

Abstract Mitochondrial quality control is essential for the long-term survival of postmitotic neurons. The E3 ubiquitin ligase Parkin promotes the degradation of damaged mitochondria via mitophagy and mutations in Parkin are a major cause of early-onset Parkinson’s disease (PD). Surprisingly however, mice deleted for Parkin alone are rather asymptomatic for PD-related pathology, suggesting that other complementary or redundant mitochondrial quality control pathways may exist in neurons. Mitochondrial damage is often accompanied by the release of toxic proteins such as cytochrome c. We have reported that once in the cytosol, cytochrome c is targeted for degradation by the E3 ligase CUL9 in neurons. Here we examined whether CUL9 and Parkin cooperate to promote optimal neuronal survival in vivo. We generated mice deficient for both Cul9 and Parkin and examined them for PD-related phenotypes. Specifically, we conducted assays to examine behavioural deficits (locomotor, sensory, memory and learning) and loss of dopaminergic neurons in both males and females. Our results show that the loss of Cul9 and Parkin together did not enhance the effect of Parkin deficiency alone. These results indicate that while both Parkin and CUL9 participate in mitochondrial quality control, neurons likely have multiple redundant mechanisms to ensure their long-term survival.


2021 ◽  
Author(s):  
Joanne L Usher ◽  
Juliette J Lee ◽  
Alvaro Sanchez-Martinez ◽  
Alexander J Whitworth

Parkinson's disease-related proteins, PINK1 and parkin, act in a common pathway to maintain mitochondrial quality control. While the PINK1-parkin pathway can promote autophagic mitochondrial turnover (mitophagy) in cell culture, recent studies have questioned whether they contribute to mitophagy in vivo, and alternative PINK1- and parkin-dependent mitochondrial quality control pathways have been proposed. To determine the mechanisms by which the Pink1-parkin pathway operates in vivo, we developed methods to detect Ser65-phosphorylated ubiquitin (pS65-Ub) in Drosophila. Exposure to the oxidant paraquat led to robust, Pink1-dependent pS65-Ub production. Surprisingly, parkin-null flies displayed strikingly elevated basal levels of pS65-Ub, suggestive of disrupted flux through the Pink1-parkin pathway. Depletion of the core autophagy proteins Atg1, Atg5 and Atg8a did not cause pS65-Ub accumulation to the same extent as loss of parkin, and overexpression of parkin was able to reduce both basal and paraquat-induced pS65-Ub levels in an Atg5-null background. Taken together, these results suggest that the Pink1-parkin pathway is able to promote mitochondrial turnover independently of canonical autophagy in vivo.


Life ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 371
Author(s):  
Filipa Barroso Gonçalves ◽  
Vanessa Alexandra Morais

Mitochondria are known as highly dynamic organelles essential for energy production. Intriguingly, in the recent years, mitochondria have revealed the ability to maintain cell homeostasis and ultimately regulate cell fate. This regulation is achieved by evoking mitochondrial quality control pathways that are capable of sensing the overall status of the cellular environment. In a first instance, actions to maintain a robust pool of mitochondria take place; however, if unsuccessful, measures that lead to overall cell death occur. One of the central key players of these mitochondrial quality control pathways is PINK1 (PTEN-induce putative kinase), a mitochondrial targeted kinase. PINK1 is known to interact with several substrates to regulate mitochondrial functions, and not only is responsible for triggering mitochondrial clearance via mitophagy, but also participates in maintenance of mitochondrial functions and homeostasis, under healthy conditions. Moreover, PINK1 has been associated with the familial form of Parkinson’s disease (PD). Growing evidence has strongly linked mitochondrial homeostasis to the central nervous system (CNS), a system that is replenished with high energy demanding long-lasting neuronal cells. Moreover, sporadic cases of PD have also revealed mitochondrial impairments. Thus, one could speculate that mitochondrial homeostasis is the common denominator in these two forms of the disease, and PINK1 may play a central role in maintaining mitochondrial homeostasis. In this review, we will discuss the role of PINK1 in the mitochondrial physiology and scrutinize its role in the cascade of PD pathology.


2017 ◽  
Vol 7 (1) ◽  
pp. 13-29 ◽  
Author(s):  
Dominika Truban ◽  
Xu Hou ◽  
Thomas R. Caulfield ◽  
Fabienne C. Fiesel ◽  
Wolfdieter Springer

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Sorabh Sharma ◽  
Rajeev Taliyan

The worldwide prevalence of movement disorders is increasing day by day. Parkinson’s disease (PD) is the most common movement disorder. In general, the clinical manifestations of PD result from dysfunction of the basal ganglia. Although the exact underlying mechanisms leading to neural cell death in this disease remains unknown, the genetic causes are often established. Indeed, it is becoming increasingly evident that chromatin acetylation status can be impaired during the neurological disease conditions. The acetylation and deacetylation of histone proteins are carried out by opposing actions of histone acetyltransferases (HATs) and histone deacetylases (HDACs), respectively. In the recent past, studies with HDAC inhibitors result in beneficial effects in bothin vivoandin vitromodels of PD. Various clinical trials have also been initiated to investigate the possible therapeutic potential of HDAC inhibitors in patients suffering from PD. The possible mechanisms assigned for these neuroprotective actions of HDAC inhibitors involve transcriptional activation of neuronal survival genes and maintenance of histone acetylation homeostasis, both of which have been shown to be dysregulated in PD. In this review, the authors have discussed the putative role of HDAC inhibitors in PD and associated abnormalities and suggest new directions for future research in PD.


2020 ◽  
Vol 13 (10) ◽  
pp. dmm045815 ◽  
Author(s):  
Gideon L. Hughes ◽  
Michael A. Lones ◽  
Matthew Bedder ◽  
Peter D. Currie ◽  
Stephen L. Smith ◽  
...  

ABSTRACTAnimal models of human disease provide an in vivo system that can reveal molecular mechanisms by which mutations cause pathology, and, moreover, have the potential to provide a valuable tool for drug development. Here, we have developed a zebrafish model of Parkinson's disease (PD) together with a novel method to screen for movement disorders in adult fish, pioneering a more efficient drug-testing route. Mutation of the PARK7 gene (which encodes DJ-1) is known to cause monogenic autosomal recessive PD in humans, and, using CRISPR/Cas9 gene editing, we generated a Dj-1 loss-of-function zebrafish with molecular hallmarks of PD. To establish whether there is a human-relevant parkinsonian phenotype in our model, we adapted proven tools used to diagnose PD in clinics and developed a novel and unbiased computational method to classify movement disorders in adult zebrafish. Using high-resolution video capture and machine learning, we extracted novel features of movement from continuous data streams and used an evolutionary algorithm to classify parkinsonian fish. This method will be widely applicable for assessing zebrafish models of human motor diseases and provide a valuable asset for the therapeutics pipeline. In addition, interrogation of RNA-seq data indicate metabolic reprogramming of brains in the absence of Dj-1, adding to growing evidence that disruption of bioenergetics is a key feature of neurodegeneration.This article has an associated First Person interview with the first author of the paper.


2017 ◽  
Vol 114 (15) ◽  
pp. 3999-4004 ◽  
Author(s):  
Athanasios D. Spathis ◽  
Xenophon Asvos ◽  
Despina Ziavra ◽  
Theodoros Karampelas ◽  
Stavros Topouzis ◽  
...  

Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic (DAergic) neurons in the substantia nigra and the gradual depletion of dopamine (DA). Current treatments replenish the DA deficit and improve symptoms but induce dyskinesias over time, and neuroprotective therapies are nonexistent. Here we report that Nuclear receptor-related 1 (Nurr1):Retinoid X receptor α (RXRα) activation has a double therapeutic potential for PD, offering both neuroprotective and symptomatic improvement. We designed BRF110, a unique in vivo active Nurr1:RXRα-selective lead molecule, which prevents DAergic neuron demise and striatal DAergic denervation in vivo against PD-causing toxins in a Nurr1-dependent manner. BRF110 also protects against PD-related genetic mutations in patient induced pluripotent stem cell (iPSC)-derived DAergic neurons and a genetic mouse PD model. Remarkably, besides neuroprotection, BRF110 up-regulates tyrosine hydroxylase (TH), aromatic l-amino acid decarboxylase (AADC), and GTP cyclohydrolase I (GCH1) transcription; increases striatal DA in vivo; and has symptomatic efficacy in two postneurodegeneration PD models, without inducing dyskinesias on chronic daily treatment. The combined neuroprotective and symptomatic effects of BRF110 identify Nurr1:RXRα activation as a potential monotherapeutic approach for PD.


2019 ◽  
Vol 59 (1) ◽  
pp. 263-289 ◽  
Author(s):  
Birgit Liss ◽  
Jörg Striessnig

The motor symptoms of Parkinson's disease (PD) mainly arise from degeneration of dopamine neurons within the substantia nigra. As no disease-modifying PD therapies are available, and side effects limit long-term benefits of current symptomatic therapies, novel treatment approaches are needed. The ongoing phase III clinical study STEADY-PD is investigating the potential of the dihydropyridine isradipine, an L-type Ca2+channel (LTCC) blocker, for neuroprotective PD therapy. Here we review the clinical and preclinical rationale for this trial and discuss potential reasons for the ambiguous outcomes of in vivo animal model studies that address PD-protective dihydropyridine effects. We summarize current views about the roles of Cav1.2 and Cav1.3 LTCC isoforms for substantia nigra neuron function, and their high vulnerability to degenerative stressors, and for PD pathophysiology. We discuss different dihydropyridine sensitivities of LTCC isoforms in view of their potential as drug targets for PD neuroprotection, and we conclude by considering how these aspects could guide further drug development.


Sign in / Sign up

Export Citation Format

Share Document