scholarly journals Cathepsin L Regulates Metabolic Networks Controlling Rapid Cell Growth and Proliferation

2019 ◽  
Vol 18 (7) ◽  
pp. 1330-1344 ◽  
Author(s):  
Tommy Weiss-Sadan ◽  
Gal Itzhak ◽  
Farnusch Kaschani ◽  
Zhanru Yu ◽  
Mohamed Mahameed ◽  
...  
2021 ◽  
Author(s):  
Ho-Joon Lee ◽  
Fangzhou Shen ◽  
Alec Eames ◽  
Mark P Jedrychowski ◽  
Sriram Chandrasekaran

Cell cycle is a fundamental process for cell growth and proliferation, and its dysregulation leads to many diseases. How metabolic networks are regulated and rewired during the cell cycle is unknown. Here we apply a dynamic genome-scale metabolic modeling framework (DFA) to simulate a cell cycle of cytokine-activated murine pro-B cells. Phase-specific reaction activity predicted by DFA using time-course metabolomics were validated using matched time-course proteomics and phospho-proteomics data. Our model correctly predicted changes in methionine metabolism at the G1/S transition and the activation of lysine metabolism, nucleotides synthesis, fatty acid elongation and heme biosynthesis at the critical G0/G1 transition into cell growth and proliferation. Metabolic fluxes predicted from proteomics and phosphoproteomics constrained metabolic models were highly consistent with DFA fluxes and revealed that most reaction fluxes are regulated indirectly. Our model can help predict the impact of changes in nutrients, enzymes, or regulators on this critical cellular process.


Insects ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 361
Author(s):  
Wenliang Qian ◽  
Yan Yang ◽  
Zheng Li ◽  
Yuting Wu ◽  
Xuechuan He ◽  
...  

Silkworm is an economically important insect that synthetizes silk proteins for silk production in silk gland, and silk gland cells undergo endoreplication during larval period. Transcription factor Myc is essential for cell growth and proliferation. Although silkworm Myc gene has been identified previously, its biological functions in silkworm silk gland are still largely unknown. In this study, we examined whether enhanced Myc expression in silk gland could facilitate cell growth and silk production. Based on a transgenic approach, Myc was driven by the promoter of the fibroin heavy chain (FibH) gene to be successfully overexpressed in posterior silk gland. Enhanced Myc expression in the PSG elevated FibH expression by about 20% compared to the control, and also increased the weight and shell rate of the cocoon shell. Further investigation confirmed that Myc overexpression increased nucleus size and DNA content of the PSG cells by promoting the transcription of the genes involved in DNA replication. Therefore, we conclude that enhanced Myc expression promotes DNA replication and silk protein expression in endoreplicating silk gland cells, which subsequently raises silk yield.


2013 ◽  
Vol 114 (7) ◽  
pp. 1625-1633 ◽  
Author(s):  
Xiu-Li Jin ◽  
Qin-Sheng Sun ◽  
Feng Liu ◽  
Hong-Wei Yang ◽  
Min Liu ◽  
...  

2021 ◽  
Author(s):  
Hyunbum Jang ◽  
Iris Nira Smith ◽  
Charis Eng ◽  
Ruth Nussinov

AbstractTumor suppressor PTEN dephosphorylates signaling lipid PIP3 produced by PI3Ks. Abundant PIP3 promotes cell growth and proliferation. PTEN is the second most highly mutated protein in cancer and is drugless. The detailed mechanism at the membrane of this pivotal phosphatase is unknown hindering understanding and drug discovery. Here for the first time, exploiting explicit solvent simulations, we tracked full-length PTEN trafficking from the cytosol to the membrane, its interaction with membranes composed of zwitterionic phosphatidylcholine and anionic phosphatidylserine and phosphatidylinositol, including signaling lipids PIP2 and PIP3, and moving away from the zwitterionic and getting absorbed onto the anionic membrane that harbors the PIP3. PIP3 then allosterically unfolds the N-terminal PIP2 binding domain, translocating it to the membrane where its polybasic motif interacts with PIP2, localizing on microdomains enriched in signaling lipids, as PI3K does. Finally, we determined PTEN catalytic action at the membrane, all in line with available experimental observations.


2020 ◽  
Vol 477 (15) ◽  
pp. 2893-2919
Author(s):  
Walaa E. Kattan ◽  
John F. Hancock

The three human RAS proteins are mutated and constitutively activated in ∼20% of cancers leading to cell growth and proliferation. For the past three decades, many attempts have been made to inhibit these proteins with little success. Recently; however, multiple methods have emerged to inhibit KRAS, the most prevalently mutated isoform. These methods and the underlying biology will be discussed in this review with a special focus on KRAS-plasma membrane interactions.


2020 ◽  
Author(s):  
Manh Tin Ho ◽  
Jiongming Lu ◽  
Beat Suter

Summary / AbstractAminoacyl-tRNA synthetases (aaRSs) not only load the appropriate amino acid onto their cognate tRNA, but many of them perform additional functions that are not necessarily related to their canonical activities. Phenylalanyl-tRNA synthetase (PheRS/FARS) levels are elevated in various cancer cells compared to their normal cell counterparts. However, whether and how these levels might contribute to tumor formation was not clear. Here, we show that PheRS is required for cell growth and proliferation. Interestingly, elevated expression of the α-PheRS subunit alone stimulates cell growth and proliferation. In the wing discs system, this leads to a strong increase of mitotic cells. Clonal analysis of twin spots in dividing follicle cells revealed that elevated expression of the α-PheRS subunit causes cells to grow and proliferate about 25% faster than their normal twin cells. Importantly, this stimulation of growth and proliferation neither required the β-PheRS subunit nor the aminoacylation activity, and it did not visibly stimulate translation. These results, therefore, revealed a non-canonical function of an ancient housekeeping enzyme, providing novel insight into its roles in health and diseases.


2021 ◽  
Vol 22 (11) ◽  
pp. 3633-3640
Author(s):  
Pongsakorn Martviset ◽  
Luxsana Panrit ◽  
Pathanin Chantree ◽  
Phunuch Muhamad ◽  
Kesara Na-Bangchang

Sign in / Sign up

Export Citation Format

Share Document