scholarly journals The measurement of total body water in living pigs by deuterium oxide dilution and its relation to body composition

1973 ◽  
Vol 30 (1) ◽  
pp. 149-156 ◽  
Author(s):  
R. A. Houseman ◽  
I. Mcdonald ◽  
K. Pennie

1. Deuterium oxide was used to estimate body water in twenty-four pigs of widely differing body composition and of average weight 83·9 kg.2. After infusion of the isotope, blood samples were collected every 30 min for 4 h. The resulting plasma was purified by a heat-distillation procedure, after which it was analysed for D2O by infrared spectroscopy.3. Approximately 24 h after infusion of the D2O each pig was killed, and its composition determined both by chemical analysis and physical dissection.4. Equilibration of D2O in the body was found to be complete within 2 h of injection of the tracer.5. The mean D2O space was found to be 8·6% greater than the mean empty body water space, but only 2·2% greater than the total body water space.6. Empty body water and total body water were estimated from the regression lines with residual standard deviations of 2·7 and 1·9% respectively. Similarly, the residual standard deviations of the regressions involving the other fat-free components were 6·3% for dissectible lean, 3·2% for fat-free mass, and 5·6% for crude protein.7. The residual standard deviations of the regressions in which the weights of dissectible fat and total body lipid were predicted were 6·0 and 6·7% respectively.

1968 ◽  
Vol 19 (2) ◽  
pp. 267 ◽  
Author(s):  
BA Panaretto

Correlations are described between tritiated water space, total body water, fat, and protein in sheep subjected to 18–21 hr of fasting. These provide a system for estimating the body composition of living ruminants.


1965 ◽  
Vol 45 (1) ◽  
pp. 14-21 ◽  
Author(s):  
T. D. D. Groves ◽  
A. J. Wood

The method of Keston et al. (J. Biol. Chem. 122, 227) for the in-vivo determination of total body water when applied to the growing piglet has been evaluated and found to produce values in good agreement with those obtained by desiccation of the same animals.The densitometric method for the determination of deuterium oxide provides results of sufficient precision when considered in relation to the other unavoidable errors involved in work with live animals. The relative simplicity of the techniques and equipment in the present investigation recommend them for more extensive use in sequential studies of the body composition of growing animals.


1982 ◽  
Vol 33 (2) ◽  
pp. 375 ◽  
Author(s):  
PR Bird ◽  
PC Flinn ◽  
JWD Cayley ◽  
MJ Watson

The body composition of 23 Hereford steers was related to their liveweight after a 24 h fast (W), total body water (TBW), tritiated water space (T) and age in months (A) by using allometric or linear regression models. Fifteen steers, of similar initial age, were taken at intervals from a grazing experiment having a wide range of stocking rates. These steers were 15-22 months of age and 189-461 kg W at slaughter. Six younger and two older steers were also used to expand the range to 3-33 months and 90-517 kg. The steers were taken from pasture 3 h after sunrise and deprived of feed and water thereafter. After 4 h, tritiated water was given intramuscularly and 20 h later blood was collected and the animals were weighed and slaughtered. Models having the least residual standard deviation (r.s.d.) and the predictors which contributed significantly in the stepwise regression analysis (P i 0.05) are given for each range of W. T greatly improved the estimation of fat and slightly improved the prediction of protein. A only slightly improved the prediction of TBW and fat. Equations applicable to the narrow range of W were: total body water (kg) =


1999 ◽  
Vol 45 (7) ◽  
pp. 1077-1081 ◽  
Author(s):  
Graham Jennings ◽  
Leslie Bluck ◽  
Antony Wright ◽  
Marinos Elia

Abstract Background: The conventional method of measuring total body water by the deuterium isotope dilution method uses gas isotope ratio mass spectrometry (IRMS), which is both expensive and time-consuming. We investigated an alternative method, using Fourier transform infrared spectrophotometry (FTIR), which uses less expensive instrumentation and requires little sample preparation. Method: Total body water measurements in human subjects were made by obtaining plasma, saliva, and urine samples before and after oral dosing with 1.5 mol of deuterium oxide. The enrichments of the body fluids were determined from the FTIR spectra in the range 1800–2800 cm−1, using a novel algorithm for estimation of instrumental response, and by IRMS for comparison. Results: The CV (n = 5) for repeat determinations of deuterium oxide in biological fluids and calibrator solutions (400–1000 μmol/mol) was found to be in the range 0.1–0.9%. The use of the novel algorithm instead of the integration routines supplied with the instrument gave at least a threefold increase in precision, and there was no significant difference between the results obtained with FTIR and those obtained with IRMS. Conclusion: This improved infrared method for measuring deuterium enrichment in plasma and saliva requires no sample preparation, is rapid, and has potential value to the clinician.


1994 ◽  
Vol 72 (1) ◽  
pp. 33-44 ◽  
Author(s):  
J. J. Reilly ◽  
L. A. Murray ◽  
J. Wilson ◽  
J. V. G. A. Durnin

There is a paucity of data on differences between methods for the assessment of body composition in elderly subjects. Studies on younger adults suggest that such differences are of some practical significance at the individual level. In the present study the following methods of estimating percentage body fatness (BF%) were compared in healthy elderly men and women (mean age 70 (SD 6) years: densitometry; skinfold thickness; total body water; bioelectrical impedance (BIA) using an age-specific predictive equation and the manufacturers' equation; body mass index (BMI). Though BF% estimates from the various methods tended to be highly correlated with those from densitometry and with each other, differences between methods at the individual level were marked. In particular, the age-specific equations based on BMI and BIA systematically overestimated BF% relative to the other methods. Biases between BF% estimates derived from densitometry, skinfolds, BIA (manufacturers' equation) and total body water were less marked, indicating little evidence of systematic differences between these methods in elderly subjects. Individual differences between methods were slightly greater than those reported in some studies of younger adults, but this may be of little practical significance, and may be considered inevitable in view of variability between and within subjects in the extent to which the underlying assumptions of these two-component methods are met in elderly subjects.


1988 ◽  
Vol 59 (1) ◽  
pp. 109-124 ◽  
Author(s):  
R. J. Johnson ◽  
D. J. Farrell

1. Birds (n169) which varied in age, live weight, nutritional history, physiological state and genotype were slaughtered and analysed for total body water. Before slaughter, birds were injected with the water isotopes tritiated water (TOH) or deuterium oxide (D2O), or both, to determine TOH space or D2O space, or both, as estimates of total body water in vivo.2. At the mean total body water of all birds determined by desiccation, of 1096·4 (SD 424·1) g, TOH space and D2O space overestimated total body water by 10·4 and 8·5 % respectively. The difference between the isotopes was significant (P< 0·05).3. Based on recovery of isotope it was postulated that the main reason for the observed overestimation of total body water in vivo was incomplete recovery of isotope due to the vacuum sublimation technique. The mean recovery (%) of added isotope to whole blood after vacuum sublimation was 93·0 (SD 2·6) and 92·4 (SD 5·5) of the theoretical concentrations of TOH and D2O respectively.4. Nevertheless, accurate prediction of total body water was obtained from regression equations which included live weight and isotope-dilution space. Values required logarithmic (base 10) transformation before derivation of linear and multiple linear regression equations, and the precision of prediction was determined by the residual standard deviation (RSD).5. Total body water could be predicted with nearly equal accuracy from live weight or isotope-dilution space (RSD 0·025 and 0·020 respectively). Prediction of carcass protein was more accurate from live weight (RSD 0·033) than from TOH space (RSD 0·036), and inclusion of both variables resulted in only a marginal decrease in RSD to 0·031.6. The prediction of carcass fat and energy was markedly improved by the inclusion of isotope-dilution space in conjunction with live weight compared with live weight alone.7. The relations show the developmental nature of body composition of domestic fowl given diets adequate in nutrients. The prediction equations demonstrate the precision possible for studies in which estimates of body composition in poultry are required without slaughter.


2001 ◽  
Vol 2001 ◽  
pp. 206-206 ◽  
Author(s):  
R. E. Agnew ◽  
W J McCaughey ◽  
J.D. McEvoy ◽  
D C Patterson ◽  
M G Porter ◽  
...  

San Pietro and Rittenberg (1953) reported that urea appeared to meet all the requirements of a satisfactory tracer. Urea is non toxic, not foreign to the body and it shows an even and rapid distribution throughout the total body water without any physiological effect. For these reasons in addition to its easy and accurate measurement, urea is an ideal candidate tracer to estimate empty body water in vivo. Total body water volume (urea space) can be estimated by dividing the total amount of urea infused by the increase in plasma urea concentration from prior to infusion until 12 or 30 minutes after mean infusion time. Kock and Preston (1973) reported significant relationships between urea space measurements and percentage of empty body fat and water in cattle. However, Andrew et al. (1995) using 21 Holstein cows showed that prediction of empty body water using the urea space technique only explained 31 % of the variation. The objective of this experiment was to use the urea dilution technique to estimate the body composition of lactating dairy cows and produce relationships between urea space and body fat and protein content.


1979 ◽  
Vol 29 (1) ◽  
pp. 81-90 ◽  
Author(s):  
R. T. Cowan ◽  
J. J. Robinson ◽  
J. F. D. Greenhalgh ◽  
I. McHattie

ABSTRACTChanges in body composition during lactation were measured in 12 Border Leicester × Scottish Blackface ewes by serial slaughter at 12, 41 and 111 days of lactation. Ewes suckled twin lambs and were given daily 1·6 kg dry matter of a complete diet containing 151 g crude protein and 10·2 MJ metabolizable energy/kg dry matter.Live weights of ewes averaged 60·2, 58·9 and 55·8 kg at 12, 41 and 111 days of lactation respectively. There were no significant changes in weights of stomach, small and large intestine and liver.The weight of body fat averaged 9·19, 2·28 and 1·19 kg at 12, 41 and 111 days respectively (P < 0·001) and weight of ash increased from 1·72 kg at 12 days to 2·30 kg at 111 days (P < 0·001). Water to protein ratios at the three stages of lactation were 2·94, 3·36 and 3·18 (P < 0·10). The energy value of weight loss varied from 68 to 17 MJ/kg, depending on the relative changes in total body water and fat. Live-weight change was therefore a poor indicator of change in body energy during early lactation.Body fat could be predicted from its combined relationships with live weight and total body water (residual s.d. ±0·70 kg), but when deuterium oxide space was used to estimate body water separate equations were necessary for early and later stages of lactation. This was apparently due to differences between stages of lactation in the time required for deuterium oxide to equilibrate with water in the reticulo-rumen.


2013 ◽  
Vol 38 (6) ◽  
pp. 626-632 ◽  
Author(s):  
Analiza M. Silva ◽  
Pedro B. Júdice ◽  
Catarina N. Matias ◽  
Diana A. Santos ◽  
João P. Magalhães ◽  
...  

Acute and chronic caffeine intakes have no impact on hydration status (R.J. Maughan and J. Griffin, J. Hum. Nutr. Diet. 16(6): 411–420, 2003), although no research has been conducted to analyze the effects using dilution techniques on total-body water (TBW) and its compartments. Therefore, the aim of this study was to investigate the effects of a moderate dose of caffeine on TBW, extracellular water (ECW), and intracellular water (ICW) during a 4-day period in active males. Thirty men, nonsmokers and low caffeine users (<100 mg·day−1), aged 20–39 years, participated in this double-blind, randomized, crossover trial (ClinicalTrials.gov: No. NCT01477294). The study included 2 conditions (5 mg·kg−1·day−1 of caffeine and placebo (malt-dextrin)) of 4 days each, with a 3-day washout period. TBW and ECW were assessed by deuterium oxide and sodium bromide dilution, respectively, whereas ICW was calculated as TBW minus ECW. Body composition was assessed by dual-energy X-ray absorptiometry. Physical activity (PA) was assessed by accelerometry and water intake was assessed by dietary records. Repeated-measures analysis of variance (ANOVA) was used to test main effects. No changes in TBW, ECW, or ICW and no interaction between the randomly assigned order of treatment and time were observed (p > 0.05). TBW, ECW, and ICW were unrelated to fat-free mass, water ingestion, and PA (p > 0.05). These findings indicate that a moderate caffeine dose, equivalent to approximately 5 espresso cups of coffee or 7 servings of tea, does not alter TBW and fluid distribution in healthy men, regardless of body composition, PA, or daily water ingestion.


1999 ◽  
Vol 1999 ◽  
pp. 50-50
Author(s):  
S. De Campeneere ◽  
L.O. Fiems ◽  
J.M. Vanacker ◽  
B.G. Cottyn ◽  
Ch.V. Boucqué

Urea is non-toxic, not foreign to the body and it shows an even and rapid distribution throughout the total body water without any physiological effect or toxic manifestation. For these reasons and for its easy and accurate measurement, urea is an ideal tracer to estimate body composition in vivo. Total body water volume (urea space) can be estimated by dividing the total amount of urea infused by the increase in plasma urea concentration between prior to infusion and 12, 18 or 24 min after mean infusion time (Preston and Kock, 1973). In this experiment the urea infusion technique was evaluated to estimate body composition of Belgian Blue double-muscled bulls.


Sign in / Sign up

Export Citation Format

Share Document