scholarly journals Is zinc a limiting nutrient in the diets of rural pregnant Malawian women?

1998 ◽  
Vol 79 (3) ◽  
pp. 257-265 ◽  
Author(s):  
Janet-Marie Huddle ◽  
Rosalind S. Gibson ◽  
Timothy R. Cullinan

Pregnant women consuming plant-based diets are at risk of Zn deficiency; Zn requirements for fetal growth and maternal tissue accretion are high. Therefore we have studied, at 24 and 33 weeks gestation, the Zn status of eighty-seven pregnant rural Malawian women (mean age 22·7 years) who consume maize-based diets, using anthropometry, dietary intake data, plasma and hair Zn concentrations, and infection status via serum C-reactive protein, leucocyte count, and malaria blood smear. Of the women, 12% were stunted (height-for-age Z score < -2 SD) and 20% lost weight over the 9-week period; weight gain averaged 0·13 kg/week. Mean plasma Zn concentration declined significantly from 24 to 33 weeks (7·9 (SD 2·2) v. 6·6 (SD 2·0) μmol/l; P < 0·0003). Both plasma and hair Zn values were very low; nearly 50% of the women had both plasma and hair Zn values below acceptable cut-off values. No significant differences in biochemical Zn indices existed between those who tested positive and negative for infection. Cereals (mainly maize) provided more than two-thirds of mean energy intake compared with less than 5% from flesh foods. As a result about 60% of the subjects had dietary phytate: Zn molar ratios greater than 15, and more than 35% had inadequate Zn intakes based on probability estimates and WHO basal requirements. Biochemical evidence of Zn deficiency was attributed in part to low intakes of poorly available Zn. The anthropometric, biochemical, and dietary data together indicate that Zn deficiency may be a factor limiting pregnancy outcome in rural Malawian women.

1992 ◽  
Vol 68 (2) ◽  
pp. 515-527 ◽  
Author(s):  
Manuel Ruz ◽  
Kelley R. Cavan ◽  
William J. Bettger ◽  
Rosalind S. Gibson

During a controlled zinc depletion-repletion study, fifteen men aged 25.3 (sd 3.3) years were fed on a low-Zn diet with high phytate:Zn and phytate × calcium: Zn molar ratios for 7 weeks, followed by a 2 week repletion period when 30 mg supplemental Zn/d was given. Changes in plasma, urine, and hair Zn concentrations, taste acuity, and cellular immune response confirmed the development of mild Zn deficiency. Zn concentrations in neutrophils, platelets, erythrocytes and erythrocyte membranes, mean platelet volume, and activities of alkaline phosphatse (EC3.1.3.1) and α-d-mannosidase (EC3.2.1.24) in neutrophils did not respond to changes in Zn status. In contrast, alkaline phosphatase activity in erythrocyte membranes showed a significant decline which was consistent in all subjects (nmol product formed/min per mg protein; baselinev.7-week Zn depletion, 0.656 (sd 0.279)v.0.506 (sd 0.230), at 7 weeks;P< 0.05); neutral phosphatase activity remained unchanged. Alkaline phosphatase activity in erythrocyte membranes may be a potential index of Zn status in humans


HortScience ◽  
1990 ◽  
Vol 25 (11) ◽  
pp. 1392-1396 ◽  
Author(s):  
Hening Hu ◽  
Darrell Sparks

The effect of Zn deficiency on reproductive growth of `Stuart' pecan [Carya illinoensis (Wangenh.) C. Koch] was studied. At the most severe Zn-deficiency level, shoots were rosetted and produced neither. staminate nor pistillate inflorescences. At less severe Zn-deficiency levels, catkin length and weight decreased as Zn concentration in the leaf decreased. The number of fruits produced per shoot was reduced by Zn deficiency. Even though fruit abortion was not affected by Zn status of the shoot, fruit death and drying in situ increased with increasing Zn deficiency. Zinc deficiency dramatically suppressed fruit development and resulted in delayed and staggered shuck dehiscence.


2011 ◽  
Vol 107 (3) ◽  
pp. 398-404 ◽  
Author(s):  
R. M. Ortega ◽  
E. Rodríguez-Rodríguez ◽  
A. Aparicio ◽  
A. I. Jiménez ◽  
A. M. López-Sobaler ◽  
...  

Zn plays a key role in the synthesis and action of insulin. The aim of the present work was to determine whether a poorer Zn status was associated with insulin resistance in a group of 357 Spanish schoolchildren. Zn intake was determined by using a 3 d food record (i.e. Sunday to Tuesday). The body weight, height and waist and hip circumferences of all subjects were recorded and fasting plasma glucose, insulin and Zn concentrations were determined. Insulin resistance was determined using the homoeostasis model assessment (HOMA) marker. Children (11·5 %) with Zn deficiency (serum Zn concentration < 10·7 μmol/l) had higher HOMA values than those with a more satisfactory Zn status (1·73 (sd0·93)) compared with 1·38 (sd0·90;P < 0·05). An inverse correlation was found between the HOMA value and the serum Zn concentration (r− 0·149,P < 0·05). The risk of having a greater insulin resistance value (HOMA greater than the 75th percentile) increased with age (OR 1·438; 95 % CI 1·021, 2·027) and BMI (OR 1·448; 95 % CI 1·294, 1·619) and decreased as Zn serum levels increased (OR 0·908; 95 % CI 0·835, 0·987;P < 0·001). Moreover, an inverse relationship was observed between HOMA values and Zn dietary density (r− 0·122), and the Zn intakes of male children with a HOMA value of >3·16 made a significantly smaller contribution to the coverage of those recommended (59·7 (sd14·7) %) than observed in children with lower HOMA values (73·6 (sd18·2) %;P < 0·05). Taking into account that Zn intake was below than that recommended in 89·4 % of the children, it would appear that increasing the intake of Zn could improve the health and nutritional status of these children, and thus contribute to diminish problems of insulin resistance.


1978 ◽  
Vol 39 (2) ◽  
pp. 297-306 ◽  
Author(s):  
J. K. Chesters ◽  
Marie Will

1.65Zn uptake by blood cells in vitro has been compared with plasma Zn concentration and plasma alkaline phosphatase (EC3.1.3.1) activity as indicators of an animal's Zn status.2. Dietary Zn deficiency, low food intake, reduced dietary protein content and endotoxin administration all reduced plasma Zn concentration in the rat. In each case there was a parallel reduction in plasma alkaline phosphatase activity and an increase in65Zn uptake in vitro by cells of whole blood.3. A similar relationship between the three measurements existed in sheep with lowered plasma Zn concentrations whether these were caused by dietary deficiency or by post-surgical stress.4.65Zn uptake by cells of whole blood did not differentiate dietary Zn deficiency from the other factors which reduce plasma Zn under ‘field’ conditions.5.65Zn uptake by the cells in whole blood in vitro was three to five times less rapid in blood of ruminant origin than in that from non-ruminants. This difference related to the erythrocytes rather than to the leukocytes or the plasma.


2008 ◽  
Vol 101 (12) ◽  
pp. 1783-1786 ◽  
Author(s):  
Solo Kuvibidila ◽  
Mbele Vuvu

Zn is an essential trace element required throughout the life cycle. Although suboptimal Zn status is thought to be common in many sub-Saharan countries, there is a paucity of data in the Democratic Republic of Congo. The objective of the study was to determine Zn status in non-pregnant Congolese women. We measured plasma Zn and indicators of nutritional status (albumin, prealbumin, retinol-binding protein) and inflammation (C-reactive protein (CRP), ceruloplasmin, α1-acid glycoprotein (AGP)) in seventy-seven lactating and thirty non-lactating women (mean age 28 and 31 years, respectively). Blood samples were collected in summer 1989 in rural Bas-Congo during a survey on Fe status. Mean lactation period was 8·3 months. Mean parity was higher in lactating (3·6) than in non-lactating (2·2) women (P < 0·05). Mean biochemical indicators of nutritional status, CRP and ceruloplasmin were within normal range and not different between groups. Mean AGP concentrations were above normal (>1·2 g/l) and higher in lactating (1·365 g/l) than in non-lactating (1·178 g/l) women (P < 0·05). Mean Zn concentration (540 μg/l) of the overall study population was below normal (700 μg/l); and the mean was lower in lactating (455 μg/l) than in non-lactating (759 μg/l) women (P < 0·05). Multiple regression analysis suggested that parity (P < 0·05), but not inflammation, was the most important factor associated with low Zn levels. Despite the lack of data on dietary intake, the results suggest that suboptimal Zn status may be common in the studied population.


1990 ◽  
Vol 64 (1) ◽  
pp. 201-209 ◽  
Author(s):  
Mary C. Canton ◽  
F. M. Cremin

Unlike severe zinc deficiency, marginal Zn deficiency is difficult to identify in rats because no reliable indicator of suboptimal Zn status is currently available. We have previously observed reduced pancreatic γ-glutamyl hydrolase (EC3.4.22.12) activity and impaired pteroylpolyglutamate absorption in Zn-deficient rats. In the present study the effect of Zn depletion and repletion on the Zn concentration of various tissues and on the activity of this enzyme was investigated. The objective was to determine the sensitivity of these variables to Zn depletion and to evaluate their usefulness as indices of Zn status. Male Wistar rats (about 180 g), maintained from weanling on a purified Zn-adequate diet, were randomly allocated into twelve groups. A pretreatment control group was killed immediately. The remaining eleven groups were fed on a Zn-deficient diet and a group killed daily for 7 d (Zn-depleted groups). The remaining four groups were re-fed the Zn-adequate diet and a group killed daily (Zn-repleted groups). On analysis, pancreas and spleen Zn levels responded most rapidly to reduced Zn intake, followed by tibia, liver, kidney and plasma. Zn concentration was maintained in testes. Reduced plasma folate levels were also observed. A significant reduction in pancreatic γ-glutamyl hydrolase activity before the depletion of many tissue Zn stores confirms the Zn sensitivity of the enzyme. It was concluded that future investigation into the inter-relationship between Zn and folate metabolism may be useful in identifying a sensitive, biochemical index of Zn status.


Human zinc (Zn) deficiency is a worldwide problem, especially in developing countries due to the prevalence of cereals in the diet. Among different alleviation strategies, genetic Zn biofortification is considered a sustainable approach. However, it may depend on Zn availability from soils. We grew Zincol-16 (genetically-Zn-biofortified wheat) and Faisalabad-08 (widely grown standard wheat) in pots with (8 mg kg−1) or without Zn application. The cultivars were grown in a low-Zn calcareous soil. The grain yield of both cultivars was significantly (P≤0.05) increased with that without Zn application. As compared to Faisalabad-08, Zincol-16 had 23 and 41% more grain Zn concentration respectively at control and applied rate of Zn. Faisalabad-08 accumulated about 18% more grain Zn concentration with Zn than Zincol-16 without Zn application. A near target level of grain Zn concentration (36 mg kg−1) was achieved in Zincol-16 only with Zn fertilisation. Over all, the findings clearly signify the importance of agronomic Zn biofortification of genetically Zn-biofortified wheat grown on a low-Zn calcareous soil.


2014 ◽  
Vol 65 (1) ◽  
pp. 61 ◽  
Author(s):  
Mohsin S. Al-Fahdawi ◽  
Jason A. Able ◽  
Margaret Evans ◽  
Amanda J. Able

Durum wheat (Triticum turgidum ssp. durum) is susceptible to Fusarium pseudograminearum and sensitive to zinc (Zn) deficiency in Australian soils. However, little is known about the interaction between these two potentially yield-limiting factors, especially for Australian durum varieties. The critical Zn concentration (concentration of Zn in the plant when there is a 10% reduction in yield) and degree of susceptibility to F. pseudograminearum was therefore determined for five Australian durum varieties (Yawa, Hyperno, Tjilkuri, WID802, UAD1153303). Critical Zn concentration averaged 24.6 mg kg–1 for all durum varieties but differed for the individual varieties (mg kg–1: Yawa, 21.7; Hyperno, 22.7; Tjilkuri, 24.1; WID802, 24.8; UAD1153303, 28.7). Zinc efficiency also varied amongst genotypes (39–52%). However, Zn utilisation was similar amongst genotypes under Zn-deficient or Zn-sufficient conditions (0.51–0.59 and 0.017–0.022 g DM μg–1 Zn, respectively). All varieties were susceptible to F. pseudograminearum but the development of symptoms and detrimental effect on shoot biomass and grain yield were significantly greater in Tjilkuri. Even though crown rot symptoms may still be present, the supply of adequate Zn in the soil helped to maintain biomass and grain yield in all durum varieties. However, the extent to which durum varieties were protected from plant growth penalties due to crown rot by Zn treatment was genotype-dependent.


1990 ◽  
Vol 30 (4) ◽  
pp. 557 ◽  
Author(s):  
JD Armour ◽  
AD Robson ◽  
GSP Ritchie

Navy beans (Phaseolus vulgaris cv. Gallaroy) were grown with 7 rates of zinc (Zn) in a Zn-deficient gravelly sandy loam in a glasshouse experiment. The plant shoots were harvested 31 days after sowing and the Zn concentration in each of 4 plant parts (YL, young leaf; YOL, young open leaf; YFEL, youngest fully expanded leaf; and whole shoots) was related to the fresh weight of the shoots. The critical Zn concentrations (mgtkg) in the plant parts determined by the 2 intersecting straight lines model were 21.1 for YL (r2 = 0.66), 17.1 for YOL (r2 = 0.83), 10.6 for YFEL (r2 = 0.91) and 12.5 for the whole tops (r2 = 0.88). The YFEL was selected as an appropriate diagnostic tissue because it is readily identifiable in the field and had the highest 1.2 with fresh weight. In a second glasshouse experiment, the critical Zn concentration in the YFEL and 5 soil tests were evaluated for their ability to predict the Zn status of navy beans. There were 13 soils from sands to clays with a wide range of chemical properties. The soil tests were 0.1 mol/L HCl, DTPA, EDTA, dilute CaCl2 and soil solution Zn. The concentration of Zn in the YFEL correctly predicted Zn deficiency or adequacy in about 77% of samples. The results from both experiments showed that a critical Zn concentration of 10-11 mg/kg in the YFEL can be used to diagnose the Zn status of Gallaroy navy beans. It was not possible to recommend a single soil test for prediction of the relative yield of navy beans. A combination of quantity (HCl, EDTA, DTPA) and intensity (soil solution, 0.002 mol/L CaCl2, 0.01 mol/L CaCl2) parameters were able to explain most of the variation in the Zn concentration of the YFEL, a more sensitive measure of nutrient availability than relative yield. EDTA-Zn in combination with 0.01 mol/L CaCl2-Zn explained 90% of the variation in the Zn concentration in the YFEL, while HCl- or DTPA-Zn and 0.01 mol/L CaCl2 explained about 80% of the variation. As soil solution Zn was significantly correlated with 0.002 and 0.01 mol/L CaCl2-Zn (r = 0.75, P<0.01; r = 0.62, P<0.05, respectively), CaCl2-Zn may be used as a more convenient measure of Zn intensity than soil solution Zn.


2020 ◽  
Vol 5 (1) ◽  

Billions of peoples are directly affected from the micronutrient malnutrition called hidden hunger affecting one in three people. Micronutrient Iron (Fe), and zinc (Zn) deficiencies affect large numbers of people worldwide. Iron (Fe) deficiency leads to maternal mortality, mental damage and lower disease resistant of children. Likely Zinc (Zn) deficiency is responsible for stunting, lower respiratory tract infections, and malaria and diarrhea disease in human beings. Nepalese lentils are in fact rich sources of proteins and micronutrients (Fe, Zn) for human health and straws as a valuable animal feed. It has ability to sequester N and C improves soil nutrient status, which in turn provides sustainable production systems. Twenty five lentil genotypes were evaluated to analyze genotype × environment interaction for iron and zinc concentration in the grains. Analysis of variance (ANOVA) indicated that the accessions under study were found varied significantly (P=<0.001) for both seed Fe and Zn concentrations at all the three locations. Pooled analysis of variance over locations displayed highly significant (at P=<0.001) differences between genotypes, locations and genotype × location interaction for Zn micronutrient but insignificant genotype x location interaction was found in Fe micronutrient. Among 25 genotypes, the ranges for seed Fe concentration were 71.81ppm (ILL-2712)-154.03 ppm (PL-4) (mean 103.34 ppm) at Khajura, 79.89 ppm (ILL-3490)-128.14 ppm (PL-4) (mean 95.43 ppm) at Parwanipur, and 83.92 ppm (ILL-7979) -137.63 ppm (ILL-6819) (mean 103.11ppm) at Rampur, while the range across all the three locations was 82.53 ppm (ILL-7979) -133.49 ppm (PL-4) (mean 101.04 ppm). Likely the range for seed Zn concentration was 53.76 ppm (ILL-7723) – 70.15 ppm (ILL-4605) (mean 61.84 ppm) at Khajura, while the ranges for Parwanipur and Rampur were 54.21 ppm (ILL-7723) -91,94 ppm (ILL-4605) (mean 76.55 ppm) and 46.41 ppm (LG-12) – 59.95 ppm (ILL-4605) (mean 54.27 ppm) , respectively. The range across the three environments was 54.03 ppm (ILL-7723) – 75.34 ppm (HUL-57) (mean 64.22 ppm). Although both the micronutrients were influenced by environment, seed Fe was more sensitive to environmental fluctuations in comparison to seed Zn concentration. The G × E study revealed that it was proved that genotypes Sagun, RL-6 and LG-12 were more stable for seed Fe concentration and genotypes WBL-77, ILL-7164, RL-11 were found more stable for seed Zn concentration. In the AMMI analysis employing Gollob’s test, first two PC explained 100% of the G × E variation. PC 1 and PC 2 explained 87.19% and 12.81% of total G × E interactions for Fe concentration and likely for Zn concentration; PC1 and PC2 explained 70.11% and 29.88%, respectively. The critical perusal of biplot revealed that Parawnipur locations was found to discriminating power for Fe concentration while for Zn concentration Khajura location was found to be most discriminative. The critical analysis of pedigree vis-à-vis micronutrient concentration did not reveal any correlation. This is probably the first report on iron and zinc concentration in lentil from Nepal.


Sign in / Sign up

Export Citation Format

Share Document