scholarly journals Calibration of a nutrient flow model of energy utilization by growing pigs

2001 ◽  
Vol 86 (6) ◽  
pp. 675-689 ◽  
Author(s):  
Stephen Birkett ◽  
Kees de Lange

A computational framework to represent energy utilization for body protein and lipid accretion by growing pigs is presented. Nutrient and metabolite flows, and the biochemical and biological processes which transform these, are explicitly represented in this nutritional process model. A calibration procedure to adjust the marginal input–output response is described, and applied, using reported experimental results, to determine a complete set of parameters for representing energy utilization by growing pigs. A reasonable value for minimum basal energy requirements is also determined. Although model inputs and outputs need not at any time be converted to equivalent energy flows, to facilitate comparison of model response with that of conventional energy-based models, a simple means to estimate energy flows from model-predicted nutrient flows is described. The well-known hierarchy of marginal (biological) energetic efficiencies with which pigs use different classes of nutrients is predicted by the model, based only on simple biological and biochemical principles. The significance of independent diet and metabolic effects on both energetic efficiency and maintenance requirements is examined using model predictions from simulated experiments.

2001 ◽  
Vol 86 (6) ◽  
pp. 661-674 ◽  
Author(s):  
Stephen Birkett ◽  
Kees de Lange

A computational framework to represent nutrient utilization for body protein and lipid accretion by growing monogastric animals is presented. Nutrient and metabolite flows, and the biochemical and biological processes which transform these, are explicitly represented. A minimal set of calibration parameters is determined to provide five degrees of freedom in the adjustment of the marginal input–output response of this nutritional process model for a particular (monogastric) animal species. These parameters reflect the energy requirements to support the main biological processes: nutrient intake, faecal and urinary excretion, and production in terms of protein and lipid accretion. Complete computational details are developed and presented for these five nutritional processes, as well as a representation of the main biochemical transformations in the metabolic processing of nutrient intake. Absolute model response is determined as the residual nutrient requirements for basal processes. This model can be used to improve the accuracy of predicting the energetic efficiency of utilizing nutrient intake, as this is affected by independent diet and metabolic effects. Model outputs may be used to generate mechanistically predicted values for the net energy of a diet at particular defined metabolic states.


2019 ◽  
Vol 97 (Supplement_2) ◽  
pp. 22-23
Author(s):  
Candido Pomar

Abstract Feeding growing pigs with diets providing the required amount of essential and non-essential amino acids (AA) reduces energy expenditure and minimizes N excretion. Low protein diets can be obtained by supplementing feeds with crystalline AA. Numerous experiments have evaluated the ideal dietary AA concentration at different growth stages, but reducing dietary protein with the use of supplemental AA is limited by the inaccuracy of the principles used to estimate AA requirements. One of these principles states that growing animals need AA for maintenance and growth. Maintenance requirements are related to BW whereas the efficiency of AA utilization (e.g., 72% for Lys) and body protein AA composition are constant (e.g., 7% for Lys). These parameters are, however, affected by AA restriction, meal frequency, energy supply, genetics, etc. Even when controlling these factors, individual pigs respond differently to the same AA supply. Yet pigs are raised in groups and fed with a unique feed for long periods. Individual pigs within a given population differ in terms of BW, ADG, health status, etc., and consequently, differ in the amount of AA they need at a given time. Therefore, when feeding a group of pigs, the concept of maintenance and growth requirements may not be appropriate. In this situation, nutrient requirements should be seen as the optimal balance between the proportion of animals that needs to be overfed and underfed. Given that for most AA, underfed animals exhibit reduced performance, whereas overfed animals exhibit near-optimal performance, optimal growth is obtained when nutrients are provided to satisfy the requirements of the most demanding animals. There is therefore a trade-off between performance and dietary protein reduction. The inaccuracy of the principles used to estimate AA requirements, both for individual animals and populations, limits how far we can go reducing dietary protein with the use of supplemental AA.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 143-143
Author(s):  
Holland C Dougherty ◽  
Hutton Oddy ◽  
Mark Evered ◽  
James W Oltjen

Abstract Target protein mass at maturity is a common “attractor” used in animal models to derive components of animal growth. This target muscle protein at maturity, M*, is used as a driver of a model of animal growth and body composition with pools representing muscle and visceral protein; where viscera is heart, lungs, liver, kidneys, reticulorumen and gastrointestinal tract; and muscle is non-visceral protein. This M* term then drives changes in protein mass and heat production, based on literature data stating that heat production scales linearly with protein mass but not liveweight. This led us to adopt a modelling approach where energy utilization is directly related to protein content of the animal, and energy not lost as heat or deposited as protein is fat. To maintain continuity with existing feeding systems we estimate M* from Standard Reference Weight (SRW) as follows: M* (kJ) = SRW * SHRINK * (1-FMAT) * (MUSC) * (CPM)* 23800. Where SRW is standard reference weight (kg), SHRINK is the ratio of empty body to live weight (0.86), FMAT is proportion of fat in the empty body at maturity (0.30), MUSC is the proportion of empty body protein that is in muscle (0.85), CPM is the crude protein content of fat-free muscle at maturity (0.21), and 23800 is the energetic content (kJ) of a kilogram of crude protein. Values for SHRINK, FMAT, MUSC and CPM were derived from a synthesis of our own experimental data and the literature. For sheep, these values show M* to be: M* (kJ) = SRW * 0.86* (1-0.3) * 0.85 * 0.21 *23800 = SRW * 2557. This method allows for use of existing knowledge regarding standard reference weight and other parameters in estimating target muscle mass at maturity, as part of a model of body composition and performance in ruminants.


Author(s):  
H. X. Liang ◽  
Q. W. Wang

This paper deals with the problem of energy utilization efficiency evaluation of a microturbine system for Combined Cooling, Heating and Power production (CCHP). The CCHP system integrates power generation, cooling and heating, which is a type of total energy system on the basis of energy cascade utilization principle, and has a large potential of energy saving and economical efficiency. A typical CCHP system has several options to fulfill energy requirements of its application, the electrical energy can be produced by a gas turbine, the heat can be generated by the waste heat of a gas turbine, and the cooling load can be satisfied by an absorption chiller driven by the waste heat of a gas turbine. The energy problem of the CCHP system is so large and complex that the existing engineering cannot provide satisfactory solutions. The decisive values for energetic efficiency evaluation of such systems are the primary energy generation cost. In this paper, in order to reveal internal essence of CCHP, we have analyzed typical CCHP systems and compared them with individual systems. The optimal operation of this system is dependent upon load conditions to be satisfied. The results indicate that CCHP brings 38.7 percent decrease in energy consumption comparing with the individual systems. A CCHP system saves fuel resources and has the assurance of economic benefits. Moreover, two basic CCHP models are presented for determining the optimum energy combination for the CCHP system with 100kW microturbine, and the more practical performances of various units are introduced, then Primary Energy Ratio (PER) and exergy efficiency (α) of various types and sizes systems are analyzed. Through exergy comparison performed for two kinds of CCHP systems, we have identified the essential principle for high performance of the CCHP system, and consequently pointed out the promising features for further development.


1981 ◽  
Vol 240 (6) ◽  
pp. E712-E721 ◽  
Author(s):  
K. J. Motil ◽  
D. E. Matthews ◽  
D. M. Bier ◽  
J. F. Burke ◽  
H. N. Munro ◽  
...  

Whole-body leucine and lysine metabolism was explored in young adult men by a primed constant intravenous infusion of a mixture of L-[1–13C]leucine and L-[alpha-15N]lysine over a 4-h period. Subjects were studied after an overnight fast (postabsorptive state) or while consuming hourly meals (fed state) after adaptation to diets providing either a surfeit level of protein (1.5 g.kg body-1.day-1), a level approximating maintenance requirements (marginal intake) (0.6 g.kg body wt-1.day-1), or a grossly inadequate level (0.1 g.kg-1.day-1). The change in protein intake from a marginal to a surfeit level was associated with an increased leucine flux and incorporation of leucine into body protein. In the fed state, oxidation of leucine increased sharply and release of leucine from tissue protein diminished. When dietary protein intake was reduced from the requirement to inadequate level, leucine flux and body protein synthesis and protein breakdown were reduced, together with a smaller reduction in leucine oxidation. The response of the metabolism of [15N]lysine was responsible for maintenance of leucine and other essential amino acid economy, and they appear to be related to the nitrogen and amino acid requirements of the subject. These findings also demonstrate an effect of meals, modulated by their protein content, on the dynamics of whole-body amino acid metabolism.


1984 ◽  
Vol 56 (3) ◽  
pp. 227-238
Author(s):  
Matti Näsi

In two digestibility and balance trials with growing pigs, whey protein concentrate (WPC) was compared as a protein supplement with casein (CAS) and dried skim milk (DSM), and, 30 % lactose (40 % dried whey, DW) was compared as a sugar supplement with the same amounts of hydrolysed lactose (HYLA) and sucrose (SUC). The effects of these supplements on protein and mineral metabolism of the pigs were investigated, WPC contained 42.2 % crude protein and had a high content of lysine, 8.6 g, and sulphur containing amino acids: cystine 2.8 and methionine 2.2g/16 g N, These exceeded the values for DSM. The hydrolysing degree of the enzymatically treated lactose syrup was 73 %. WPC had high crude protein digestibility, 99.1 % as compared to 95.4 for CAS and 95.0 % for DSM. Dried whey had low crude protein digestibility, 72.5 %. The amino acids in the WPC diet were highly digestible, but low values were obtained for the DW diet. On the WPC diet, nitrogen retention was higher than with the other protein supplements (P > 0.05), urinary urea excretion was low and the biological value very high. On a combination of WPC and HYLA protein utilisation was higher than on dried whole whey. On the diets supplemented with different sugars, none of the blood parameters differed statistically significantly (P > 0.05) and all values lay within the reference range. Water intake was on average 49 % greater on diets with sugar supplements than without. Urinary excretion of reducing sugars averaged 40.2, 8.3 and 6.6 g/d on the HYLA, SUC and DW diets, while on the diets without sugar supplements the values were 0.8—1.2 g/d. The following mean daily mineral retention values were obtained: P 4.0 g, Ca 5,9 g. Mg 0,4 g, Na 1.9g, K 2.9 g, Fe 27 mg, Cu 6.4 mg, Zn 65 mg and Mn 4.0 mg. The surplus Na and K on the DW diet were excreted in the urine and the pigs did not have diarrhoea.


Author(s):  
Bonjin Koo ◽  
Olumide Adeshakin ◽  
Charles Martin Nyachoti

Abstract An experiment was performed to evaluate the energy content of extruded-expelled soybean meal (EESBM) and the effects of heat treatment on energy utilization in growing pigs. Eighteen growing barrows (18.03 ± 0.61 kg initial body weight) were individually housed in metabolism crates and randomly allotted to one of three dietary treatments (six replicates/treatment). The three experimental diets were: a corn-soybean meal-based basal diet and two test diets with simple substitution of a basal diet with intact EESBM or heat-treated EESBM (heat-EESBM) at a 7:3 ratio. Intact EESBM was autoclaved at 121°C for 60 min to make heat-treated EESBM. Pigs were fed the experimental diets for 16 d, including 10 d for adaptation and 6 d for total collection of feces and urine. Pigs were then moved into indirect calorimetry chambers to determine 24-h heat production and 12-h fasting heat production. The energy content of EESBM was calculated using the difference method. Data were analyzed using the Mixed procedure of SAS with the individual pig as the experimental unit. Pigs fed heat-EESBM diets showed lower (P < 0.05) apparent total tract digestibility of dry matter (DM), gross energy, and nitrogen than those fed intact EESBM. A trend (P ≤ 0.10) was observed for greater heat increments in pigs fed intact EESBM than those fed heat-EESBM. This resulted in intact EESBM having greater (P < 0.05) digestible energy (DE) and metabolizable energy (ME) contents than heat-EESBM. However, no difference was observed in net energy (NE) contents between intact EESBM and heat-EESBM, showing a tendency (P ≤ 0.10) toward an increase in NE/ME efficiency in heat-EESBM, but comparable NE contents between intact and heat-EESBM. In conclusion, respective values of DE, ME, and NE are 4,591 kcal/kg, 4,099 kcal/kg, and 3,189 kcal/kg in intact EESBM on a DM basis. It is recommended to use NE values of feedstuffs that are exposed to heat for accurate diet formulation.


1980 ◽  
Vol 239 (4) ◽  
pp. H469-H469
Author(s):  
Michael Goodlett ◽  
Kyran Dowling ◽  
Lynne J. Eddy ◽  
James M. Downey

The effect of either isoproterenol or propranolol on the metabolism of ischemic myocardium was examined. To ensure that all changes were due to changes in metabolism and not drug-induced changes in residual flow to the ischemic regions, we devised a preparation in which two coronary branches on the same heart were simultaneously perfused at a low flow rate. Microsphere measurements verified that the two ischemic regions were receiving identical blood flow rates. One branch received an infusion of 0.9% NaCl and the other received the drug. After 1 h both regions were biopsied and the high-energy phosphate levels in each region were determined. ATP and phosphocreatine each fell to about 50% of their starting values in the 0.9% NaCl-treated regions, and isoproterenol did not further depress the high-energy phosphate concentrations. Propranolol, on the other hand, significantly preserved the high-energy phosphate concentrations. We conclude that although isoproterenol seemed incapable of accelerating energy utilization in ischemic myocardium, propranolol is apparently capable of reducing it.


Sign in / Sign up

Export Citation Format

Share Document