scholarly journals Signalling components involved in contraction-inducible substrate uptake into cardiac myocytes

2004 ◽  
Vol 63 (2) ◽  
pp. 251-258 ◽  
Author(s):  
Joost J. F. P. Luiken ◽  
Susan L. M. Coort ◽  
Debby P. Y. Koonen ◽  
Arend Bonen ◽  
Jan F. C. Glatz

Glucose and long-chain fatty acids (LCFA) are two major substrates used by heart and skeletal muscle to support contractile activity. In quiescent cardiac myocytes a substantial portion of the glucose transporter GLUT4 and the putative LCFA transporter fatty acid translocase (FAT)/CD36 are stored in intracellular compartments. Induction of cellular contraction by electrical stimulation results in enhanced uptake of both glucose and LCFA through translocation of GLUT4 and FAT/CD36 respectively to the sarcolemma. The involvement of protein kinase A, AMP-activated protein kinase (AMPK), protein kinase C (PKC) isoforms and the extracellular signal-regulated kinases was evaluated in cardiac myocytes as candidate signalling enzymes involved in recruiting these transporters in response to contraction. The collected evidence excluded the involvement of PKA and implicated an important role for AMPK and for one (or more) PKC isoform(s) in contraction-induced translocation of both GLUT4 and FAT/CD36. The unravelling of further components along this contraction pathway can provide valuable information on the coordinated regulation of the uptake of glucose and of LCFA by an increase in mechanical activity of heart and skeletal muscle.

Physiology ◽  
2005 ◽  
Vol 20 (4) ◽  
pp. 271-284 ◽  
Author(s):  
Farah S. L. Thong ◽  
Chandrasagar B. Dugani ◽  
Amira Klip

Insulin stimulation of glucose uptake into skeletal muscle and adipose tissues is achieved by accelerating glucose transporter GLUT4 exocytosis from intracellular compartments to the plasma membrane and minimally reducing its endocytosis. The round trip of GLUT4 is intricately regulated by diverse signaling molecules impinging on specific compartments. Here we highlight the key molecular signals that are turned on and off by insulin to accomplish this task.


2004 ◽  
Vol 63 (2) ◽  
pp. 227-232 ◽  
Author(s):  
Yun Chau Long ◽  
Ulrika Widegren ◽  
Juleen R. Zierath

Exercise training improves glucose homeostasis through enhanced insulin sensitivity in skeletal muscle. Muscle contraction through physical exercise is a physiological stimulus that elicits multiple biochemical and biophysical responses and therefore requires an appropriate control network. Mitogen-activated protein kinase (MAPK) signalling pathways constitute a network of phosphorylation cascades that link cellular stress to changes in transcriptional activity. MAPK cascades are divided into four major subfamilies, including extracellular signal-regulated kinases 1 and 2, p38 MAPK, c-Jun NH2-terminal kinase and extracellular signal-regulated kinase 5. The present review will present the current understanding of parallel MAPK signalling in human skeletal muscle in response to exercise and muscle contraction, with an emphasis on identifying potential signalling mechanisms responsible for changes in gene expression.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Mei-Hsing Chen ◽  
Cheng-Hsiu Lin ◽  
Chun-Ching Shih

The objective of this study was to evaluate the antihyperlipidemic and antihyperglycemic effects and mechanism of the extract ofClitocybe nuda(CNE), in high-fat- (HF-) fed mice. C57BL/6J was randomly divided into two groups: the control (CON) group was fed with a low-fat diet, whereas the experimental group was fed with a HF diet for 8 weeks. Then, the HF group was subdivided into five groups and was given orally CNE (including C1: 0.2, C2: 0.5, and C3: 1.0 g/kg/day extracts) or rosiglitazone (Rosi) or vehicle for 4 weeks. CNE effectively prevented HF-diet-induced increases in the levels of blood glucose, triglyceride, insulin (P<0.001,P<0.01,P<0.05, resp.) and attenuated insulin resistance. By treatment with CNE, body weight gain, weights of white adipose tissue (WAT) and hepatic triacylglycerol content were reduced; moreover, adipocytes in the visceral depots showed a reduction in size. By treatment with CNE, the protein contents of glucose transporter 4 (GLUT4) were significantly increased in C3-treated group in the skeletal muscle. Furthermore, CNE reduces the hepatic expression of glucose-6-phosphatase (G6Pase) and glucose production. CNE significantly increases protein contents of phospho-AMP-activated protein kinase (AMPK) in the skeletal muscle and adipose and liver tissues. Therefore, it is possible that the activation of AMPK by CNE leads to diminished gluconeogenesis in the liver and enhanced glucose uptake in skeletal muscle. It is shown that CNE exhibits hypolipidemic effect in HF-fed mice by increasing ATGL expression, which is known to help triglyceride to hydrolyze. Moreover, antidiabetic properties of CNE occurred as a result of decreased hepatic glucose production via G6Pase downregulation and improved insulin sensitization. Thus, amelioration of diabetic and dyslipidemic states by CNE in HF-fed mice occurred by regulation of GLUT4, G6Pase, ATGL, and AMPK phosphorylation.


Author(s):  
Abraham Giacoman-Martínez ◽  
Francisco Javier Alarcón-Aguilar ◽  
Alejandro Zamilpa-Alvarez ◽  
Fengyang Huang ◽  
Rodrigo Romero ◽  
...  

α-amyrin, a natural pentacyclic triterpene, have anti-hyperglycemic effect in mice and dual PPARδ/γ action in 3T3-L1 adipocytes, and potential in the control of type 2 diabetes (T2D). About 80% of glucose uptake occurs in skeletal muscle cells, playing a significant role in IR and T2D. Peroxisome-proliferator activated receptors (PPARs), in particular PPARδ and PPARγ, are involved in the regulation of lipids and carbohydrates and, along adenosine-monophosphate (AMP)-activated protein kinase (AMPK) and protein kinase B (Akt/PKB), are implicated in translocation of glucose transporter 4 (GLUT4). However, it is still unknown whether α-amyrin can affect these pathways in skeletal muscle cells. The work's objective was to determine the action of α-amyrin in PPARδ, PPARγ, AMPK, and Akt/PKB in C2C12 myoblasts. The expression of PPARδ, PPARγ, FATP, and GLUT4 was quantified using RT-qPCR and Western blot. α-amyrin increased these markers along with p-AMPK but not p-Akt/PKB. Molecular docking showed that α-amyrin acts as an AMPK-allosteric activator, and may be related to GLUT4 translocation, evidenced by confocal microscopy. These data support that α-amyrin could have an insulin-mimetic action in C2C12 myoblasts and should be considered as a bioactive molecule for new multitarget drugs with utility in T2D and other metabolic diseases.


2011 ◽  
Vol 111 (1) ◽  
pp. 125-134 ◽  
Author(s):  
Marcia J. Abbott ◽  
Lindsey D. Bogachus ◽  
Lorraine P. Turcotte

AMP-activated protein kinase (AMPK) is a fuel sensor in skeletal muscle with multiple downstream signaling targets that may be triggered by increases in intracellular Ca2+ concentration ([Ca2+]). The purpose of this study was to determine whether increases in intracellular [Ca2+] induced by caffeine act solely via AMPKα2 and whether AMPKα2 is essential to increase glucose uptake, fatty acid (FA) uptake, and FA oxidation in contracting skeletal muscle. Hindlimbs from wild-type (WT) or AMPKα2 dominant-negative (DN) transgene mice were perfused during rest ( n = 11), treatment with 3 mM caffeine ( n = 10), or muscle contraction ( n = 11). Time-dependent effects on glucose and FA uptake were uncovered throughout the 20-min muscle contraction perfusion period ( P < 0.05). Glucose uptake rates did not increase in DN mice during muscle contraction until the last 5 min of the protocol ( P < 0.05). FA uptake rates were elevated at the onset of muscle contraction and diminished by the end of the protocol in DN mice ( P < 0.05). FA oxidation rates were abolished in the DN mice during muscle contraction ( P < 0.05). The DN transgene had no effect on caffeine-induced FA uptake and oxidation ( P > 0.05). Glucose uptake rates were blunted in caffeine-treated DN mice ( P < 0.05). The DN transgene resulted in a greater use of intramuscular triglycerides as a fuel source during muscle contraction. The DN transgene did not alter caffeine- or contraction-mediated changes in the phosphorylation of Ca2+/calmodulin-dependent protein kinase I or ERK1/2 ( P > 0.05). These data suggest that AMPKα2 is involved in the regulation of substrate uptake in a time-dependent manner in contracting muscle but is not necessary for regulation of FA uptake and oxidation during caffeine treatment.


Endocrinology ◽  
2005 ◽  
Vol 146 (9) ◽  
pp. 3773-3781 ◽  
Author(s):  
C. N. Antonescu ◽  
C. Huang ◽  
W. Niu ◽  
Z. Liu ◽  
P. A. Eyers ◽  
...  

Abstract Insulin increases glucose uptake through translocation of the glucose transporter GLUT4 to the plasma membrane. We previously showed that insulin activates p38MAPK, and inhibitors of p38MAPKα and p38MAPKβ (e.g. SB203580) reduce insulin-stimulated glucose uptake without affecting GLUT4 translocation. This observation suggested that insulin may increase GLUT4 activity via p38α and/or p38β. Here we further explore the possible participation of p38MAPK through a combination of molecular strategies. SB203580 reduced insulin stimulation of glucose uptake in L6 myotubes overexpressing an SB203580-resistant p38α (drug-resistant p38α) but barely affected phosphorylation of the p38 substrate MAPK-activated protein kinase-2. Expression of dominant-negative p38α or p38β reduced p38MAPK phosphorylation by 70% but had no effect on insulin-stimulated glucose uptake. Gene silencing via isoform-specific small interfering RNAs reduced expression of p38α or p38β by 60–70% without diminishing insulin-stimulated glucose uptake. SB203580 reduced photoaffinity labeling of GLUT4 by bio-LC-ATB-BMPA only in the insulin-stimulated state. Unless low levels of p38MAPK suffice to regulate glucose uptake, these results suggest that the inhibition of insulin-stimulated glucose transport by SB203580 is likely not mediated by p38MAPK. Instead, changes experienced by insulin-stimulated GLUT4 make it susceptible to inhibition by SB203580.


Sign in / Sign up

Export Citation Format

Share Document