Comparison of Extraction Techniques and Surfactants for the Isolation of Total Polyphenols and Phlorotannins from the Brown Algae Lobophora variegata

2019 ◽  
Vol 52 (17) ◽  
pp. 2724-2740 ◽  
Author(s):  
Gülçin Gümüş Yılmaz ◽  
Juan Luis Gómez Pinchetti ◽  
Alejandro Cifuentes ◽  
Miguel Herrero ◽  
Elena Ibáñez
Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1008 ◽  
Author(s):  
Ana Dobrinčić ◽  
Maja Repajić ◽  
Ivona Elez Garofulić ◽  
Lucija Tuđen ◽  
Verica Dragović-Uzelac ◽  
...  

In the present study, advanced extraction techniques, microwave (MAE), ultrasound (UAE), and high pressure (HPAE)-assisted extraction, were applied to improve extraction efficiency of olive (Olea europaea L.) leaves polyphenols. The effect of sample mass (1.5 and 3 g), MAE—time (2, 8.5, and 15 min) and temperature (45 and 80 °C), UAE—time (7, 14, and 21 min) and amplitude (50 and 100%) and HPAE—time (1, 5.5, and 10 min) and pressure (300 and 500 MPa) on the concentration of each analyzed polyphenol compound was examined. Identified polyphenols were oleuropein, hydroxytyrosol, chlorogenic acid, caffeic acid, verbascoside, and rutin. All three advanced extraction techniques yielded higher content of total polyphenols when compared to the conventional heat-reflux extraction (CE) along with a significant reduction of extraction time from 60 (CE) to 2, 21, and 5.5 min in MAE, UAE, and HPAE, respectively. The most intensive values of tested parameters in each technique were the ones that promoted cell wall disruption, e.g., temperature of 80 °C in MAE, 100% amplitude in UAE and 500 MPa in HPAE. MAE and UAE were more efficient in total polyphenols’ recovery than HPAE.


Marine Drugs ◽  
2020 ◽  
Vol 18 (3) ◽  
pp. 168 ◽  
Author(s):  
Ana Dobrinčić ◽  
Sandra Balbino ◽  
Zoran Zorić ◽  
Sandra Pedisić ◽  
Danijela Bursać Kovačević ◽  
...  

Over the years, brown algae bioactive polysaccharides laminarin, alginate and fucoidan have been isolated and used in functional foods, cosmeceutical and pharmaceutical industries. The extraction process of these polysaccharides includes several complex and time-consuming steps and the correct adjustment of extraction parameters (e.g., time, temperature, power, pressure, solvent and sample to solvent ratio) greatly influences the yield, physical, chemical and biochemical properties as well as their biological activities. This review includes the most recent conventional procedures for brown algae polysaccharides extraction along with advanced extraction techniques (microwave-assisted extraction, ultrasound assisted extraction, pressurized liquid extraction and enzymes assisted extraction) which can effectively improve extraction process. The influence of these extraction techniques and their individual parameters on yield, chemical structure and biological activities from the most current literature is discussed, along with their potential for commercial applications as bioactive compounds and drug delivery systems.


Author(s):  
Retno Suryandari

Macroalgae are multicellular plants that do not produce seeds or flowers. All macroalgae are multicellular and do not have a specialized body structure and do not have reproductive mechanism like terrestrial plants. Macroalgae is divided into 3 groups namely Chlorophyta (green algae), Rhodophyta (red algae), and Phaeophyceae (brown algae). Green algae and red algae belong to the Plantae kingdom with green algae (Chlorophyta) and included in the Subkingdom Viridiplantae and red algae (Rhodophyta) into the Biliphyta subkingdom. Brown algae (Phaeophyta) belong to the Chromista kingdom. Based on the research, macroalgae found in Drini and Krakal Gunungkidul are green algae, red algae and brown algae. Green algae found and identified are Anadyomene plicata C. Agardh, Chaetomorpha antennina (Bory) Kṻtzing, Chaetomorpha linum (O.F. Mṻller) Kṻtzing, Boergesenia forbesii (Hardvey) Feldmann, Cladophoropsis herpestica (Montagne) M. Howe, Boodlea composita (Harvey) F. Brand, Caulerpa peltata J.V. Lamoroux, Enteromorpha intestinalis (Linnaeus) Nees, Ulva lactuca Linnaeus. Red algae species found and successfully identified are Acrocystis nana Zanardini, Acanthophora spicifera (M. Vahl) Børgesen, Laurencia papilosa (C. Agardh) Greville, Actinotrichia fragilis (Forsskål) Børgesen, Galaxaura rugosa (J. Ellis & Solander) J.V. Lamoroux, Amphiora anceps (Lamark) Decaisne, Gelidiela acerosa (Forsskål) Feldmann & Hamel, Gracilaria canaliculata Sonder, Gelidiopsis intricata (C.Agardh) Vickers. Brown algae species found and identified are Lobophora variegata (J.V.Lamouroux) Womersley ex E.C.Oliveira, Padina minor Yamada, Sargassum crassifolium J. Agardh, Turbinaria ornata (Turner) J. Agardh. The species that classified as a new record in Indonesia are Cladophoropsis herpestica (Montagne) M. Howe and Gracilaria spinulosa (Okamura) Chang & B.M.Xia.


2014 ◽  
Vol 27 (3) ◽  
pp. 1315-1325 ◽  
Author(s):  
Luiza Sheyla Evenni Porfírio Will Castro ◽  
Thuane de Sousa Pinheiro ◽  
Allisson Jhonatan Gomes Castro ◽  
Marilia da Silva Nascimento Santos ◽  
Eliane Marinho Soriano ◽  
...  

2009 ◽  
Vol 5 (1) ◽  
pp. 32
Author(s):  
Melanie Maytin ◽  
Laurence M Epstein ◽  
◽  

Prior to the introduction of successful intravascular countertraction techniques, options for lead extraction were limited and dedicated tools were non-existent. The significant morbidity and mortality associated with these early extraction techniques limited their application to life-threatening situations such as infection and sepsis. The past 30 years have witnessed significant advances in lead extraction technology, resulting in safer and more efficacious techniques and tools. This evolution occurred out of necessity, similar to the pressure of natural selection weeding out the ineffective and highly morbid techniques while fostering the development of safe, successful and more simple methods. Future developments in lead extraction are likely to focus on new tools that will allow us to provide comprehensive device management and the design of new leads conceived to facilitate future extraction. With the development of these new methods and novel tools, the technique of lead extraction will continue to require operators that are well versed in several methods of extraction. Garnering new skills while remembering the lessons of the past will enable extraction technologies to advance without repeating previous mistakes.


2018 ◽  
Vol 14 (1) ◽  
pp. 31-60 ◽  
Author(s):  
M. Y. Guida ◽  
F. E. Laghchioua ◽  
A. Hannioui

This article deals with fast pyrolysis of brown algae, such as Bifurcaria Bifurcata at the range of temperature 300–800 °C in a stainless steel tubular reactor. After a literature review on algae and its importance in renewable sector, a case study was done on pyrolysis of brown algae especially, Bifurcaria Bifurcata. The aim was to experimentally investigate how the temperature, the particle size, the nitrogen flow rate (N2) and the heating rate affect bio-oil, bio-char and gaseous products. These parameters were varied in the ranges of 5–50 °C/min, below 0.2–1 mm and 20–200 mL. min–1, respectively. The maximum bio-oil yield of 41.3wt% was obtained at a pyrolysis temperature of 600 °C, particle size between 0.2–0.5 mm, nitrogen flow rate (N2) of 100 mL. min–1 and heating rate of 5 °C/min. Liquid product obtained under the most suitable and optimal condition was characterized by elemental analysis, 1H-NMR, FT-IR and GC-MS. The analysis of bio-oil showed that bio-oil from Bifurcaria Bifurcata could be a potential source of renewable fuel production and value added chemicals.


Sign in / Sign up

Export Citation Format

Share Document