Effects of thiamine and clenbuterol on body composition, plasma metabolites and hepatic oxygen consumption in broiler chicks

1999 ◽  
Vol 40 (1) ◽  
pp. 127-130 ◽  
Author(s):  
Y. HAMANO
1958 ◽  
Vol 12 (3) ◽  
pp. 395-398 ◽  
Author(s):  
B. E. Welch ◽  
R. P. Riendeau ◽  
C. E. Crisp ◽  
R. S. Isenstein

2021 ◽  
Vol 12 ◽  
Author(s):  
Jingxin Liu ◽  
Lin Zhu ◽  
Jing Liao ◽  
Xiaoguang Liu

Objectives: To evaluate the effect of extreme weight loss programs on circulating metabolites and their relationship with cardiometabolic health in children with metabolic syndrome.Methods: This study was a quasi-experimental design with a pretest and post-test. Thirty children with metabolic syndrome and aged 10–17years were recruited to an extreme weight loss program (i.e., exercise combined with diet control). The primary outcomes included plasma metabolites, body composition, and cardiometabolic risk factors. A total of 324 metabolites were quantitatively detected by an ultra-performance liquid chromatography coupled to tandem mass spectrometry system, and the variable importance in the projection (VIP) value of each metabolite was calculated by the orthogonal projection to latent structures discriminant analysis. The fold change (FC) and p value of each metabolite were used to screen differential metabolites with the following values: VIP>1, p value<0.05, and |log2FC|>0.25. Pathway enrichment and correlation analyses between metabolites and cardiometabolic risk factors were also performed.Result: A large effect size was observed, presenting a weight loss of −8.9kg (Cohen’s d=1.00, p<0.001), body mass index reduction of −3.3kg/m2 (Cohen’s d=1.47, p<0.001), and body fat percent reduction of −4.1 (%) (Cohen’s d=1.22, p<0.001) after the intervention. Similar improvements were found in total cholesterol (Cohen’s d=2.65, p<0.001), triglycerides (Cohen’s d=2.59, p<0.001), low-density lipoprotein cholesterol (Cohen’s d=2.81, p<0.001), glucose metabolism, and blood pressure. A total of 59 metabolites were changed after the intervention (e.g., aminoacyl-tRNA biosynthesis, glycine, serine, and threonine metabolism; nitrogen metabolism, tricarboxylic acid cycle, and phenylalanine, tyrosine, and tryptophan biosynthesis). The changes in metabolites (e.g., amino acids, fatty acids, organic acids, and carnitine) were related to lipid metabolism improvement (p<0.05). Organic acids and carnitines were associated with changes in the body composition (p<0.05).Conclusion: Exercise combined with dietary control improved the body composition and cardiometabolic health in children with metabolic syndrome, and these changes may be related to plasma metabolites.


PEDIATRICS ◽  
1967 ◽  
Vol 39 (5) ◽  
pp. 724-732
Author(s):  
John C. Sinclair ◽  
Jon W. Scopes ◽  
William A. Silverman

Oxygen consumption of 92 normally grown newborn babies of birth weight 750 to 3,940 gm has been expressed in terms of various metabolic reference standards in order to identify any systematic variation in expression of metabolic rate that is introduced by these bases of reference in the newborn population. It is postulated that differences in body composition comprise a contributory factor to the variation among newborn babies in rate of oxygen consumption per kilogram body weight. The predictive error from a mean value is increased if surface area, body weight, or fat-free body weight is substituted for body weight as a metabolic reference standard. By taking into account known changes in body composition of the fetus with increasing maturity, a compartment representing the active tissue mass is calculated. This corresponds closely to body weight minus extracellular fluid and includes fat. Rate of oxygen consumption is proportional to the size of this compartment over the range of body weights studied. Implications are discussed as to the metabolic rate of adipose tissue in the newborn and body composition among undergrown babies.


2006 ◽  
Vol 5 (3) ◽  
pp. 229-240 ◽  
Author(s):  
M.W. Wineland . ◽  
V.L. Christensen . ◽  
I. Yildrum . ◽  
B.D. Fairchild . ◽  
K.M. Mann . ◽  
...  

2019 ◽  
Vol 98 (1) ◽  
Author(s):  
Sue A McCoard ◽  
Omar Cristobal-Carballo ◽  
Frederik W Knol ◽  
Axel Heiser ◽  
Muhammed A Khan ◽  
...  

Abstract AbstractThis study evaluated the effect of early weaning (EW) of artificially reared lambs using a restricted milk replacer (MR) feeding and step-down weaning system on the short- and long-term effects on growth, feed intake, selected blood metabolites and hormones, body composition, and small intestine development. Mixed-sex twin-born 2 to 5 d old lambs were randomly allocated to individual pens and fed MR at 20% of initial individual BW in week 1 and 15% in week 2 followed by weaning off MR by the end of week 4 (EW; n = 16) or week 6 (Control; Ctrl, n = 16) using a step-down procedure. Concentrate starter and fiber diets were offered ad libitum to week 9, then gradually removed over a 10-d period. All lambs were managed as a single group on pasture from weeks 6 to 16 of the trial. Feed intake was recorded daily in the first 6 wk, and BWs recorded weekly. At weeks 2, 4, 6, and 8, and pre- and postclostridial vaccination at week 8, blood samples were collected for analysis of selected blood metabolites, IGF-1, and immune function. Body composition was evaluated in eight animals per group at weeks 4 and 16 after euthanasia, and duodenal samples collected for histomorphometric evaluation. Early weaned lambs had lower DM, ME, CP, and NDF intake than Ctrl lambs at 21, 15, 21, and 36 d of rearing, respectively (P < 0.001), driven by lower intakes of MR from day 15 (P < 0.001) as per the experimental design, and lower total DMI of fiber (P = 0.001) from 21 to 42 d of rearing. Lamb BW tended (P = 0.097) to be lower in EW than Ctrl lambs from 5 to 10 wk of rearing, with lower ADG in EW lambs from weeks 3 to 6 (P = 0.041). Early weaning had negligible effects on duodenal morphology, organ, and carcass weights at weeks 4 and 16. Plasma metabolites (urea nitrogen, triglycerides, NEFA, glucose, and total protein) were similar between groups, while β-hydroxybutyrate was greater in EW than Ctrl lambs at weeks 4 and 6 (P = 0.018) but not week 8 indicative of early rumen development. Serum IGF-1 tended to be lower in EW than Ctrl lambs from weeks 2 to 6 only (P = 0.065). All lambs developed antibody responses postvaccination and there was no effect of treatment (P = 0.528). The results of this study illustrate that artificially reared lambs can be weaned off MR by 4 or 6 wk of rearing without compromising growth, small intestine morphology, major organ development, and body composition, nor immune function at either 4 (preweaning) or 16 (postweaning) wk of age.


Sign in / Sign up

Export Citation Format

Share Document