Optimal service parts contract with multiple response times and on-site spare parts

2019 ◽  
Vol 58 (10) ◽  
pp. 3049-3065 ◽  
Author(s):  
Daniel Y. Mo ◽  
Yue Wang ◽  
Lawrence C. Leung ◽  
Mitchell M. Tseng
1989 ◽  
Vol 37 (1) ◽  
pp. 104-117 ◽  
Author(s):  
Morris A. Cohen ◽  
Paul R. Kleindorfer ◽  
Hau L. Lee
Keyword(s):  

2003 ◽  
Vol 788 ◽  
Author(s):  
John J. Steele ◽  
Kenneth D. Harris ◽  
Michael J. Brett

ABSTRACTMiniaturized thin film humidity sensors were fabricated using nanostructured materials deposited by an advanced technique known as glancing angle deposition (GLAD). These sensors exhibited extremely fast desorption response times of less than 40 ms to steplike changes in humidity. Multiple response time measurements for various initial humidities have shown that the sensors maintain their rapid response at all levels of humidity.


Author(s):  
Rosselin Rosselin ◽  
Tri Yani Akhirina ◽  
Nurfidah Dwitiyanti

Bengkel Kebumen Motor is a business that is engaged in the sale of spare parts and motorcycle service services. Bengkel Kebumen Motor provides a variety of maintenance, repair and sales of spare parts as well as providing optimal service for customers. The purpose of this study is to design a spare parts and service sales system that can simplify the spare part sales process and manage service data to be faster, more effective, and efficient. The research method used in designing the spare parts and service sales system at the Bengkel Kebumen Motor is Research and Development (R&D) and the system development uses the waterfall method. Meanwhile, the data collection techniques used include interviews, observations, and conducting library research that is relevant to the spare parts and service sales system. The result of this research is the design of a computerized system built using the Java Netbeans programming language using the MySQL database. By using a computerized system, it makes it easier for workshop employees to record transactions, make it easier for the workshop to find out the amount of spare parts stock, the reporting process can be done quickly and accurately


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1506 ◽  
Author(s):  
Jonghwa Choi ◽  
Sanghyun Ahn

In recent years, we observed the proliferation of cloud data centers (CDCs) and the Internet of Things (IoT). Cloud computing based on CDCs has the drawback of unpredictable response times due to variant delays between service requestors (IoT devices and end devices) and CDCs. This deficiency of cloud computing is especially problematic in providing IoT services with strict timing requirements and as a result, gives birth to fog/edge computing (FEC) whose responsiveness is achieved by placing service images near service requestors. In FEC, the computing nodes located close to service requestors are called fog/edge nodes (FENs). In addition, for an FEN to execute a specific service, it has to be provisioned with the corresponding service image. Most of the previous work on the service provisioning in the FEC environment deals with determining an appropriate FEN satisfying the requirements like delay, CPU and storage from the perspective of one or more service requests. In this paper, we determined how to optimally place service images in consideration of the pre-obtained service demands which may be collected during the prior time interval. The proposed FEC environment is scalable in the sense that the resources of FENs are effectively utilized thanks to the optimal provisioning of services on FENs. We propose two approaches to provision service images on FENs. In order to validate the performance of the proposed mechanisms, intensive simulations were carried out for various service demand scenarios.


Author(s):  
M.J. Kim ◽  
L.C. Liu ◽  
S.H. Risbud ◽  
R.W. Carpenter

When the size of a semiconductor is reduced by an appropriate materials processing technique to a dimension less than about twice the radius of an exciton in the bulk crystal, the band like structure of the semiconductor gives way to discrete molecular orbital electronic states. Clusters of semiconductors in a size regime lower than 2R {where R is the exciton Bohr radius; e.g. 3 nm for CdS and 7.3 nm for CdTe) are called Quantum Dots (QD) because they confine optically excited electron- hole pairs (excitons) in all three spatial dimensions. Structures based on QD are of great interest because of fast response times and non-linearity in optical switching applications.In this paper we report the first HREM analysis of the size and structure of CdTe and CdS QD formed by precipitation from a modified borosilicate glass matrix. The glass melts were quenched by pouring on brass plates, and then annealed to relieve internal stresses. QD precipitate particles were formed during subsequent "striking" heat treatments above the glass crystallization temperature, which was determined by differential thermal analysis.


The Analyst ◽  
2020 ◽  
Vol 145 (1) ◽  
pp. 122-131 ◽  
Author(s):  
Wanda V. Fernandez ◽  
Rocío T. Tosello ◽  
José L. Fernández

Gas diffusion electrodes based on nanoporous alumina membranes electrocatalyze hydrogen oxidation at high diffusion-limiting current densities with fast response times.


2019 ◽  
Vol 62 (5) ◽  
pp. 1486-1505
Author(s):  
Joshua M. Alexander

PurposeFrequency lowering in hearing aids can cause listeners to perceive [s] as [ʃ]. The S-SH Confusion Test, which consists of 66 minimal word pairs spoken by 6 female talkers, was designed to help clinicians and researchers document these negative side effects. This study's purpose was to use this new test to evaluate the hypothesis that these confusions will increase to the extent that low frequencies are altered.MethodTwenty-one listeners with normal hearing were each tested on 7 conditions. Three were control conditions that were low-pass filtered at 3.3, 5.0, and 9.1 kHz. Four conditions were processed with nonlinear frequency compression (NFC): 2 had a 3.3-kHz maximum audible output frequency (MAOF), with a start frequency (SF) of 1.6 or 2.2 kHz; 2 had a 5.0-kHz MAOF, with an SF of 1.6 or 4.0 kHz. Listeners' responses were analyzed using concepts from signal detection theory. Response times were also collected as a measure of cognitive processing.ResultsOverall, [s] for [ʃ] confusions were minimal. As predicted, [ʃ] for [s] confusions increased for NFC conditions with a lower versus higher MAOF and with a lower versus higher SF. Response times for trials with correct [s] responses were shortest for the 9.1-kHz control and increased for the 5.0- and 3.3-kHz controls. NFC response times were also significantly longer as MAOF and SF decreased. The NFC condition with the highest MAOF and SF had statistically shorter response times than its control condition, indicating that, under some circumstances, NFC may ease cognitive processing.ConclusionsLarge differences in the S-SH Confusion Test across frequency-lowering conditions show that it can be used to document a major negative side effect associated with frequency lowering. Smaller but significant differences in response times for correct [s] trials indicate that NFC can help or hinder cognitive processing, depending on its settings.


2003 ◽  
Vol 62 (4) ◽  
pp. 209-218
Author(s):  
A. N’gbala ◽  
N. R. Branscombe

When do causal attribution and counterfactual thinking facilitate one another, and when do the two responses overlap? Undergraduates (N = 78) both explained and undid, in each of two orders, events that were described either with their potential causes or not. The time to perform either response was recorded. Overall, mutation response times were shorter when performed after an attribution was made than before, while attribution response times did not vary as a consequence of sequence. Depending on whether the causes of the target events were described in the scenario or not, respondents undid the actor and assigned causality to another antecedent, or pointed to the actor for both responses. These findings suggest that counterfactual mutation is most likely to be facilitated by attribution, and that mutation and attribution responses are most likely to overlap when no information about potential causes of the event is provided.


2019 ◽  
Vol 33 (3) ◽  
pp. 188-197 ◽  
Author(s):  
Roberta Adorni ◽  
Agostino Brugnera ◽  
Alessia Gatti ◽  
Giorgio A. Tasca ◽  
Kaoru Sakatani ◽  
...  

Abstract. The aim of the study was to explore the effects of situational stress and anxiety in a group of healthy elderly, both in terms of psychophysiological correlates and cognitive performance. Eighteen participants ( Mage = 70 ± 6.3; range 60–85) were assessed for anxiety and were instructed to perform a computerized math task, under both a stressful and a control condition, while near-infrared spectroscopy (NIRS) signal and electrocardiography (ECG) were recorded. NIRS results evidenced an increased activation of right PFC during the entire procedure, even if effect sizes between left and right channels were larger during the experimental condition. The amount of right activation during the stressful condition was positively correlated with anxiety. Response times (RTs) were slower in more anxious than in less anxious individuals, both during the control and stressful conditions. Accuracy was lower in more anxious than in less anxious individuals, only during the stressful condition. Moreover, heart rate (HR) was not modulated by situational stress, nor by anxiety. Overall, the present study suggests that in healthy elderly, anxiety level has a significant impact on cerebral responses, and both on the amount of cognitive resources and the quality of performance in stressful situations.


Sign in / Sign up

Export Citation Format

Share Document