Effects ofPistacia atlanticaon Oxidative Stress Markers and Antioxidant Enzymes Expression in Diabetic Rats

2019 ◽  
Vol 38 (3) ◽  
pp. 267-274 ◽  
Author(s):  
Shahrokh Bagheri ◽  
Mostafa Moradi Sarabi ◽  
Peyman Khosravi ◽  
Reza Mohammadrezaei Khorramabadi ◽  
Saeid Veiskarami ◽  
...  
2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Srijita Ghosh ◽  
Sanglap Mitra ◽  
Atreyee Paul

The physiological and biochemical responses to increasing NaCl concentrations, along with low concentrations of gibberellic acid or spermine, either alone or in their combination, were studied in mungbean seedlings. In the test seedlings, the root-shoot elongation, biomass production, and the chlorophyll content were significantly decreased with increasing NaCl concentrations. Salt toxicity severely affected activities of different antioxidant enzymes and oxidative stress markers. Activities of antioxidant enzymes, superoxide dismutase (SOD), and catalase (CAT) increased significantly over water control. Similarly, oxidative stress markers such as proline, malondialdehyde (MDA), and hydrogen peroxide (H2O2) contents also increased as a result of progressive increase in salt stress. Combined application of NaCl along with low concentrations of either gibberellic acid (5 µM) or spermine (50 µM) in the test seedlings showed significant alterations, that is, drastic increase in seedling elongation, increased biomass production, increased chlorophyll content, and significant lowering in all the antioxidant enzyme activities as well as oxidative stress marker contents in comparison to salt treated test seedlings, leading to better growth and metabolism. Our study shows that low concentrations of either gibberellic acid or spermine will be able to overcome the toxic effects of NaCl stress in mungbean seedlings.


2012 ◽  
Vol 4 (5) ◽  
pp. 871-876 ◽  
Author(s):  
DONGHONG FANG ◽  
XUESI WAN ◽  
WANPING DENG ◽  
HONGYU GUAN ◽  
WEIJIAN KE ◽  
...  

2020 ◽  
Vol 11 (2) ◽  
pp. 88-98
Author(s):  
Babatunde Ogunlade ◽  
◽  
Olasumbo Afolayan ◽  
Sunday Adelakun ◽  
◽  
...  

Lead (Pb) exposure induces oxidative stress causing imbalance in antioxidant enzymes, cognitive impairments and neurodegeneration. This study investigated the neuroprotective and antioxidant properties of sulphoraphane (SFN) on Pb-induced neurotoxicity of adult Wistar rats. Forty animals (150 ± 20 g) were divided into four groups (n=10): Group A received normal saline as placebo; Group B received 50 mg/kg body weight (bw) of Lead only; Group C received a combination of 50 mg/kg bw of Lead and 50 mg/kg bw of SFN; Group D received 50 mg/kg bw of SFN only. All administration was through oral gavages for 28 days; animals underwent behavioural tests (Morris water and Y- mazes); and thereafter sacrificed and brains extracted. Biochemical estimations of antioxidants (superoxide dismutase, reduced glutathione, and catalase), oxidative stress markers (malondialdehyde, nitric oxide, and hydrogen peroxide), neurotransmitters (dopamine, serotonin, and norepinephrine) and hippocampal histology were done. The results showed significant increase in escape latency, norepinephrine and oxidative stress markers with concomitant decrease percentage correct alternation, serotonin, dopamine and antioxidant enzymes in Pb exposed rats compared with the control. However, the co-administration of SFN and Pb significantly attenuated Pb neurotoxicity. Sulphoraphane is capable of ameliorating oxidative stress induced neurobehavioural deficits and hippocampal neurochemistry caused by Pb exposure in Alzheimer’s type animal model of neurodegenerative disorder.


Author(s):  
D. G. Syahidah Nadiah Binti Abdull Majid ◽  
Mohammad Iqbal

Objective: The antihyperglycemic and antioxidative effects of L. microphyllum were evaluated by using in vivo methods in normal and alloxan induced diabetic rats.Methods: Diabetes was induced in Sprague Dawley rats by injecting alloxan through intravenous (i. v) at a dose of 100 mg/kg of body weight. Aqueous extract of L. microphyllum at different doses (400, 200 and 100 mg/kg of body weight) was administered orally (orogastric intubation) for 14 d. Blood glucose and oxidative stress markers were measured. Hematoxylin and eosin staining method were used to examine the pancreatic tissues.Results: At the 14 d interval, fasting blood glucose showed a reduction in serum glucose levels in animals pretreated with L. microphyllum compared with alloxan alone treated group. Oxidative stress was noticed in rat’s pancreatic tissue as evidenced by a significant decrease in glutathione level, glutathione reductase, glutathione-S-transferase, and catalase activities. Malondialdehyde showed a significant increase compared to the normal saline-treated control group. Serum biochemistry and oxidative stress markers were consistent with the pancreatic histopathological studies. Treatment of diabetic rats with L. microphyllum at a dose level of 100, 200 and 400 mg/kg body weight leaves extract for 14 d significantly prevented these alterations and attenuated alloxan-induced oxidative stress (P<0.05).Conclusion: The results of the present study indicated that the antihyperglycemic potential of L. microphyllum might be ascribable to its antioxidant and free radical scavenging properties. Thus, it is concluded that L. microphyllum may be helpful in the prevention of diabetic complications associated with oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document