Effects of prolonged night-time light exposure and traffic noise on the behavior and body temperature rhythmicity of the wild desert rodent, Gerbillus tarabuli

2021 ◽  
pp. 1-11
Author(s):  
Salem Mamoun Issad ◽  
Nadir Benhafri ◽  
Khalid El Allali ◽  
Hicham Farsi ◽  
Saliha Ouali-Hassenaoui ◽  
...  
1995 ◽  
Vol 268 (5) ◽  
pp. R1111-R1116 ◽  
Author(s):  
P. Depres-Brummer ◽  
F. Levi ◽  
G. Metzger ◽  
Y. Touitou

In a constant environment, circadian rhythms persist with slightly altered period lengths. Results of studies with continuous light exposure are less clear, because of short exposure durations and single-variable monitoring. This study sought to characterize properties of the oscillator(s) controlling the rat's circadian system by monitoring both body temperature and locomotor activity. We observed that prolonged exposure of male Sprague-Dawley rats to continuous light (LL) systematically induced complete suppression of body temperature and locomotor activity circadian rhythms and their replacement by ultradian rhythms. This was preceded by a transient loss of coupling between both functions. Continuous darkness (DD) restored circadian synchronization of temperature and activity circadian rhythms within 1 wk. The absence of circadian rhythms in LL coincided with a mean sixfold decrease in plasma melatonin and a marked dampening but no abolition of its circadian rhythmicity. Restoration of temperature and activity circadian rhythms in DD was associated with normalization of melatonin rhythm. These results demonstrated a transient internal desynchronization of two simultaneously monitored functions in the rat and suggested the existence of two or more circadian oscillators. Such a hypothesis was further strengthened by the observation of a circadian rhythm in melatonin, despite complete suppression of body temperature and locomotor activity rhythms. This rat model should be useful for investigating the physiology of the circadian timing system as well as to identify agents and schedules having specific pharmacological actions on this system.


2018 ◽  
Vol 103 (8) ◽  
pp. 1119-1122 ◽  
Author(s):  
Tadanobu Yoshikawa ◽  
Kenji Obayashi ◽  
Kimie Miyata ◽  
Tetsuo Ueda ◽  
Norio Kurumatani ◽  
...  

BackgroundGlaucoma may cause physiological and behavioural circadian misalignment because of the loss of intrinsically photosensitive retinal ganglion cells, the primary receptors of environmental light. Although studies have suggested a high prevalence of depression in patients with glaucoma, it is unclear whether the association is independent of the light exposure profiles as an important confounding factor.MethodsIn this cross-sectional study of a community-based cohort of 770 elderly individuals (mean age, 70.9 years), glaucomatous optic discs were assessed using fundus photographs and depressive symptoms were assessed using the short version of the Geriatric Depression Scale (GDS). Daytime and night-time ambient light exposures were objectively measured for 2 days.ResultsDepressive symptoms (GDS score ≥6) were observed in 114 participants (prevalence, 14.8%) and glaucomatous optic discs were detected in 40 participants (prevalence, 5.2%). The prevalence of depressive symptoms was significantly higher in the group with glaucomatous optic disc than in the group without it (30.0% vs 14.0%, respectively; p=0.005). Multivariable logistic regression analysis adjusted for potential confounding factors, including daytime and night-time light exposures, revealed that the OR for depressive symptoms was significantly higher in the group with glaucomatous optic disc than in the group without it (OR 2.45, 95% CI 1.18 to 5.08; p=0.016).ConclusionsIn this general elderly population, glaucomatous optic disc was significantly associated with higher prevalence of depressive symptoms independent of a number of potential confounding factors, including daily light exposure profiles.


2018 ◽  
Vol 31 (2) ◽  
pp. 251-265 ◽  
Author(s):  
Gill Livingston ◽  
Julie A. Barber ◽  
Kirsi M. Kinnunen ◽  
Lucy Webster ◽  
Simon D. Kyle ◽  
...  

ABSTRACTBackground:40% of people with dementia have disturbed sleep but there are currently no known effective treatments. Studies of sleep hygiene and light therapy have not been powered to indicate feasibility and acceptability and have shown 40–50% retention. We tested the feasibility and acceptability of a six-session manualized evidence-based non-pharmacological therapy; Dementia RElAted Manual for Sleep; STrAtegies for RelaTives (DREAMS-START) for sleep disturbance in people with dementia.Methods:We conducted a parallel, two-armed, single-blind randomized trial and randomized 2:1 to intervention: Treatment as Usual. Eligible participants had dementia and sleep disturbances (scoring ≥4 on one Sleep Disorders Inventory item) and a family carer and were recruited from two London memory services and Join Dementia Research. Participants wore an actiwatch for two weeks pre-randomization. Trained, clinically supervised psychology graduates delivered DREAMS-START to carers randomized to intervention; covering Understanding sleep and dementia; Making a plan (incorporating actiwatch information, light exposure using a light box); Daytime activity and routine; Difficult night-time behaviors; Taking care of your own (carer's) sleep; and What works? Strategies for the future. Carers kept their manual, light box, and relaxation recordings post-intervention. Outcome assessment was masked to allocation. The co-primary outcomes were feasibility (≥50% eligible people consenting to the study) and acceptability (≥75% of intervention group attending ≥4 intervention sessions).Results:In total, 63out of 95 (66%; 95% CI: 56–76%) eligible referrals consented between 04/08/2016 and 24/03/2017; 62 (65%; 95% CI: 55–75%) were randomized, and 37 out of 42 (88%; 95% CI: 75–96%) adhered to the intervention.Conclusions:DREAM-START for sleep disorders in dementia is feasible and acceptable.


2021 ◽  
Author(s):  
WAZIR ALAM ◽  
Ramtharmawi Nungate

Abstract Noise pollution assessment was carried out in selected traffic junctions of Imphal city of Manipur, India. The noise pollution assessment was carried out using noise parameters and indices such as L10, L50, L90, Leq for selected traffic junctions during the different periods of the day, i.e., morning, noon, and evening hours. The study of equivalent noise level (Leq), noise parameters, and various noise indices have enabled the evaluation of the overall traffic noise environment of the city. The traffic noise indices such as traffic noise index (TNI), noise climate (NC), traffic noise pollution level (LNP), noise exposure index (NEI) along with day time (LD), night time (LN) average, and day-night (Ldn) noise levels were assessed for the selected traffic junctions. Moreover, spatial noise mapping was carried out using the geostatistical interpolation technique to evaluate the changes of traffic noise scenarios during the different time zones of the day. The Leq values in few traffic junctions exceeded the required noise standards. The study shows equivalent noise level ranging between 52.2–69.9 dB(A) during the morning (7–10 am), 52.4–69.3 dB(A) during noon (12 noon-2 pm), and 54.6–71.1 dB(A) during the evening (4–7 pm) hours, respectively.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Bruno Jacson Martynhak ◽  
Alexandra L. Hogben ◽  
Panos Zanos ◽  
Polymnia Georgiou ◽  
Roberto Andreatini ◽  
...  

2014 ◽  
Vol 42 (01) ◽  
pp. 173-187 ◽  
Author(s):  
Eun-Young Park ◽  
Mi-Hwi Kim ◽  
Eung-Hwi Kim ◽  
Eun-Kyu Lee ◽  
In-Sun Park ◽  
...  

Ginseng has beneficial effects in cancer, diabetes and aging. There are two main varieties of ginseng: Panax ginseng (Korean ginseng) and Panax quinquefolius (American ginseng). There are anecdotal reports that American ginseng helps reduce body temperature, whereas Korean ginseng improves blood circulation and increases body temperature; however, their respective effects on body temperature and metabolic parameters have not been studied. We investigated body temperature and metabolic parameters in mice using a metabolic cage. After administering ginseng extracts acutely (single dose of 1000 mg/kg) or chronically (200 mg/kg/day for four weeks), core body temperature, food intake, oxygen consumption and activity were measured, as well as serum levels of pyrogen-related factors and mRNA expression of metabolic genes. Acute treatment with American ginseng reduced body temperature compared with PBS-treated mice during the night; however, there was no significant effect of ginseng treatment on body temperature after four weeks of treatment. VO 2, VCO 2, food intake, activity and energy expenditure were unchanged after both acute and chronic ginseng treatment compared with PBS treatment. In acutely treated mice, serum thyroxin levels were reduced by red and American ginseng, and the serum prostaglandin E2 level was reduced by American ginseng. In chronically treated mice, red and white ginseng reduced thyroxin levels. We conclude that Korean ginseng does not stimulate metabolism in mice, whereas a high dose of American ginseng may reduce night-time body temperature and pyrogen-related factors.


2011 ◽  
Vol 278 (1716) ◽  
pp. 2311-2317 ◽  
Author(s):  
Christian C. Voigt ◽  
Daniel Lewanzik

Bats are one of the most successful mammalian groups, even though their foraging activities are restricted to the hours of twilight and night-time. Some studies suggested that bats became nocturnal because of overheating when flying in daylight. This is because—in contrast to feathered wings of birds—dark and naked wing membranes of bats efficiently absorb short-wave solar radiation. We hypothesized that bats face elevated flight costs during daylight flights, since we expected them to alter wing-beat kinematics to reduce heat load by solar radiation. To test this assumption, we measured metabolic rate and body temperature during short flights in the tropical short-tailed fruit bat Carollia perspicillata at night and during the day. Core body temperature of flying bats differed by no more than 2°C between night and daytime flights, whereas mass-specific CO 2 production rates were higher by 15 per cent during daytime. We conclude that increased flight costs only render diurnal bat flights profitable when the relative energy gain during daytime is high and risk of predation is low. Ancestral bats possibly have evolved dark-skinned wing membranes to reduce nocturnal predation, but a low degree of reflectance of wing membranes made them also prone to overheating and elevated energy costs during daylight flights. In consequence, bats may have become trapped in the darkness of the night once dark-skinned wing membranes had evolved.


2021 ◽  
Vol 75 (11) ◽  
Author(s):  
Christina Elgert ◽  
Topi K. Lehtonen ◽  
Arja Kaitala ◽  
Ulrika Candolin

Abstract Artificial light at night is increasing globally, interfering with both sensory ecology and temporal rhythms of organisms, from zooplankton to mammals. This interference can change the behaviour of the affected organisms, and hence compromise the viability of their populations. Limiting the use of artificial light may mitigate these negative effects. Accordingly, we investigated whether the duration of artificial light affects sexual signalling in female glow-worms, Lampyris noctiluca, which are flightless and attract flying males to mate by emitting glow that is interfered by light pollution. The study included three treatments: no artificial light (control), 15 min of artificial light, and 45 min of artificial light. The results show that females were more likely to cease glowing when the exposure to light was longer. Furthermore, small females were more likely to cease their glow, and responded faster to the light, than larger females. These findings suggest that glow-worms can react rapidly to anthropogenic changes in nocturnal light levels, and that prolonged periods of artificial light trigger females to stop sexual signalling. Thus, limiting the duration of artificial light can mitigate the adverse effects of light pollution on sexual signalling, highlighting the importance of such mitigation measures. Significance statement Interest in the effects of artificial light at night on animal behaviour has increased in recent years. With evidence for its negative impact accumulating, potential remedies, such as limiting the duration of light exposure, have emerged. To date, however, knowledge on the effectiveness of these methods has remained very limited. We show that female European common glow-worms, which are wingless beetles that glow to attract flying males to mate, responded to prolonged artificial light exposure by discontinuing their glow. Such non-glowing females are not expected to find a mate, making it difficult for them to reproduce. Hence, our study indicates that the duration of artificial light should be limited to protect this night-active beetle and its opportunities for effective sexual signalling. Because many other nocturnal species also need darkness, this study provides valuable information for the development and use of less disruptive night-time lights.


2021 ◽  
Vol 288 (1955) ◽  
pp. 20210721
Author(s):  
Dennis Khodasevich ◽  
Susan Tsui ◽  
Darwin Keung ◽  
Debra J. Skene ◽  
Victoria Revell ◽  
...  

Humans have largely supplanted natural light cycles with a variety of electric light sources and schedules misaligned with day-night cycles. Circadian disruption has been linked to a number of disease processes, but the extent of circadian disruption among the population is unknown. In this study, we measured light exposure and wrist temperature among residents of an urban area during each of the four seasons, as well as light illuminance in nearby outdoor locations. Daily light exposure was significantly lower for individuals, compared to outdoor light sensors, across all four seasons. There was also little seasonal variation in the realized photoperiod experienced by individuals, with the only significant difference occurring between winter and summer. We tested the hypothesis that differential light exposure impacts circadian phase timing, detected via the wrist temperature rhythm. To determine the influence of light exposure on circadian rhythms, we modelled the impact of morning and night-time light exposure on the timing of the maximum wrist temperature. We found that morning and night-time light exposure had significant but opposing impacts on maximum wrist temperature timing. Our results demonstrate that, within the range of exposure seen in everyday life, night-time light can delay the onset of the maximum wrist temperature, while morning light can lead to earlier onset. Our results demonstrate that humans are minimizing natural seasonal differences in light exposure, and that circadian shifts and disruptions may be a more regular occurrence in the general population than is currently recognized.


Sign in / Sign up

Export Citation Format

Share Document