Performance damage characteristics of asphalt mixture suffered from the sulphate–water–temperature–load coupling action

Author(s):  
Rui Xiong ◽  
Ci Chu ◽  
Bowen Guan ◽  
Yanping Sheng
2021 ◽  
Vol 269 ◽  
pp. 121252
Author(s):  
Wang Xianrong ◽  
Zhang Xiedong ◽  
Zhu Yunsheng ◽  
Li Xiaowei

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Yong-chun Cheng ◽  
Peng Zhang ◽  
Yu-bo Jiao ◽  
Ye-dan Wang ◽  
Jing-lin Tao

In order to accurately simulate the performance changes of asphalt pavement in the hot rainy days, laboratory water-temperature-radiation cycle test is designed and carried out for the damage simulation of asphalt mixture under the environmental effect of rain, high temperatures, and sunshine. Ultrasonic detection method is used to determine the ultrasonic velocity of asphalt mixture specimen under different temperatures and water contents in the process of water-temperature-radiation cycles. Thus, we get the preliminary damage assessment. Splitting strength attenuation is defined as the damage parameter. In addition, the regression prediction models of the ultrasonic velocity and damage coefficient of asphalt mixture are constructed using the grey theory, neural network method, and support vector machine theory, respectively. We compare the prediction results of the three different models. It can be concluded that the model derived from the support vector machine possesses higher accuracy and stability, which can more satisfactorily reflect the relationship between ultrasonic velocity and damage coefficient. Therefore, the damage degree of the asphalt mixture can be obtained.


2013 ◽  
Vol 361-363 ◽  
pp. 1857-1860 ◽  
Author(s):  
Yong Chun Cheng ◽  
Peng Zhang ◽  
Yu Bo Jiao ◽  
Jing Lin Tao ◽  
Ye Dan Wang

In order to accurately simulate the combined action of rainfall, high temperature and sunshine effect on asphalt mixture, the experiment of water-temperature-radiation circulation was designed. The changes of air void, split tensile strength, freeze-thaw splitting tensile strength and dynamic stability were quantitatively analyzed under the condition of different asphalt-aggregate ratio and different striking times during water-temperature-radiation cycle. Grey correlation analysis method was used to analyze the influence factors of the four parameters mentioned above, and comprehensive correlation was put forward to evaluate the influence factors of mechanical properties of asphalt mixture. It is proven that, the cycle index of water-temperature-radiation is the main factor. The striking times and asphalt-aggregate ratio influence mechanical properties of asphalt mixture less than the cycle index, and the initial void influences least.


10.6036/10174 ◽  
2021 ◽  
Vol 96 (4) ◽  
pp. 379-387
Author(s):  
Baoyong Xue ◽  
Ping Yao ◽  
Xiaolong Zou ◽  
Qian Liu ◽  
Yanlong Zhao

The erosion effect of snow-melting salt will degrade the durability of recycled asphalt pavement, but the damage characteristics of recycled asphalt mixture triggered by the erosion effect of snow-melting salt remain unclear. To solve the snow-melting salt-induced durability degradation of asphalt pavement, two commonly used snow-melting salts, NaCl and CaCl2, were selected to carry out the saline water immersion, salt-drying and -wetting cyclic and salt-freezing and -thawing cyclic splitting tests on recycled asphalt mixture, and the attenuation laws of splitting strengths and its damage characteristics under the erosion effect of snow-melting salts were analyzed. Results demonstrate that with the increase in soaking time, salt-drying and -wetting cycles and salt-freezing and -thawing cycles, the splitting strength of the recycled asphalt mixture maintain a declining trend, and the attenuation rate of splitting strength is elevated. The damage degree of the recycled asphalt mixture presents a nonlinear growth trend during saline water immersion, salt-drying and -wetting cycles, and salt-freezing and -thawing cycles. Under the same conditions, the damage degree after the action of NaCl solution is higher than that after the action of CaCl2 solution, and meanwhile, within the range of test concentration, the damage degree after the action of low-concentration saline solution is higher than that after the action of high-concentration saline solution. Conclusions provide a significant reference for the composition design and maintenance decisions of recycled asphalt pavement materials in cold regions. Keywords: road engineering; salt erosion; recycled asphalt mixture; damage characteristics; splitting strength


2018 ◽  
Vol 9 (1) ◽  
pp. 60 ◽  
Author(s):  
Wensheng Wang ◽  
Yongchun Cheng ◽  
Guirong Ma ◽  
Guojin Tan ◽  
Xun Sun ◽  
...  

The main distresses of asphalt pavements in seasonally frozen regions are due to the effects of water action, freeze-thaw cycles, and so on. Basalt fiber, as an eco-friendly mineral fiber with high mechanical performance, has been adopted to reinforce asphalt mixture in order to improve its mechanical properties. This study investigated the freeze-thaw damage characteristics of asphalt mixtures reinforced with eco-friendly basalt fiber by volume and mechanical properties—air voids, splitting tensile strength, and indirect tensile stiffness modulus tests. Test results indicated that asphalt mixtures reinforced with eco-friendly basalt fiber had better mechanical properties (i.e., splitting tensile strength and indirect tensile stiffness modulus) before and after freeze-thaw cycles. Furthermore, this study developed logistic damage models of asphalt mixtures in terms of the damage characteristics, and found that adding basalt fiber could significantly reduce the damage degree by about 25%, and slow down the damage grow rate by about 45% compared with control group without basalt fiber. Moreover, multi-variable grey models (GM) (1,N) were established for modelling the damage characteristics of asphalt mixtures under the effect of freeze-thaw cycles. GM (1,3) was proven as an effective prediction model to perform better in prediction accuracy compared to GM (1,2).


1991 ◽  
Vol 18 (1) ◽  
pp. 12-19 ◽  
Author(s):  
J. C. Jofriet ◽  
S. Jiang ◽  
S. W. Tang

Aboveground concrete cylindrical storage tanks must be designed for temperature differences between inside and outside faces of the wall. The stresses in the cylinder wall are a linear function of the temperature difference. A number of transient heat transfer finite element analyses were carried out to determine reasonable design values for this temperature difference. Extreme summer and winter conditions for southern Ontario were assumed in the analyses. It was found that for water stand-pipes supplied by groundwater the temperature difference can be as high as 25 °C, based on a summer water temperature of 10 °C. The maximum winter temperature difference was also 25 °C, based on a winter water temperature of 5 °C. For farm tower silos, a design temperature difference of 15 °C is probably more appropriate. Storage structures for other liquids can be judged if the temperature of the contained liquid is known. Key words: standpipes, structural design, temperature load, water reservoir, finite element prediction.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5930
Author(s):  
Liuxu Fu ◽  
Huanyun Zhou ◽  
Jing Yuan ◽  
Weiliang An ◽  
Xianhua Chen

Freeze–thaw (F–T) cycling and aging effects are the main factors contributing to the deterioration of asphalt mixtures. The acoustic emission (AE) technique enables real-time detection regarding the evolution of internal damage in asphalt mixtures during the loading process. This study set out to investigate the effects of F–T cycling and aging on the damage characteristics of asphalt mixture under splitting loads. Firstly, the Marshall specimens were prepared and then exposed to various numbers of F–T cycles (one, three, five, and seven) and different durations of aging (short-term aging and long-term aging for 24, 72, 120 and 168 h), after which the specimens were loaded by means of indirect tensile (IDT) testing, and corresponding parameters were synchronously collected by the AE acquisition system during the fracture process. Finally, the energy, cumulative energy and peak frequency were selected to investigate the damage mechanisms of asphalt mixtures. The findings demonstrate that the AE parameters provided effective identification of the deterioration for all specimens in real-time, and that the F–T cycling and aging effects altered the damage characteristics of asphalt mixtures, causing early damage, exacerbating the formation of micro-cracks in the early stage, accelerating the expansion of macro-cracks and advancing the debonding between the asphalt and aggregates. The findings of this study provide further insight into the mechanism of F–T cycling and aging effects on the deterioration of asphalt mixture.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2488 ◽  
Author(s):  
Yongchun Cheng ◽  
Wensheng Wang ◽  
Yafeng Gong ◽  
Shurong Wang ◽  
Shuting Yang ◽  
...  

The main distresses of asphalt pavements in seasonal frozen regions are due to the effects of water action, freeze-thaw cycles, traffic, and so on. Fibers are usually used to reinforce asphalt mixtures, in order to improve its mechanical properties. Basalt fiber is an eco-friendly mineral fiber with high mechanical performance, low water absorption, and an appropriate temperature range. This paper aims to address the freeze-thaw damage characteristics of asphalt mixtures (AC-13) reinforced with eco-friendly basalt fiber, with a length of 6 mm. Based on the Marshall design method and ordinary pavement performances, including rutting resistance, anti-cracking, and moisture stability, the optimum asphalt and basalt fiber contents were determined. Test results indicated that the pavement performances of asphalt mixture exhibited a trend of first increasing and then deceasing, with the basalt fiber content. Subsequently, asphalt mixtures with a basalt fiber content of 0.4% were prepared for further freeze-thaw tests. Through the comparative analysis of air voids, splitting strength, and indirect tensile stiffness modulus, it could be found that the performances of asphalt mixtures gradually declined with freeze-thaw cycles and basalt fiber had positive effects on the freeze-thaw resistance. This paper can be used as a reference for further investigation on the freeze-thaw damage model of asphalt mixtures with basalt fiber.


Author(s):  
Xingmei Zhang ◽  
Datian Yang ◽  
Guoxiong Wu

In order to investigate the fatigue damage property of permeable friction courses (PFC) under the coupling action of water, temperature and load, the PFC with length of 2.93 m, width of 1.10 m and thickness of 0.04 m was prepare in the laboratory and tested by the accelerated loading testing system MMLS3. The profilometer and the portable seismic properties analyzer (PSPA) was utilized to measured the rutting depth and modulus of the whole asphalt pavement, respectively. It is found that the PFC is compaction-type rutting. In the position 200 mm, the modulus first increases and then decreases. The excess pore water pressure is not measured in pavement. The results can provide beneficial references for the design, construction and fatigue damage analysis of PFC.


Sign in / Sign up

Export Citation Format

Share Document