The genus Paraconiothyrium: species concepts, biological functions, and secondary metabolites

Author(s):  
Junfei Wang ◽  
Shicheng Shao ◽  
Chuansheng Liu ◽  
Zhiqiang Song ◽  
Sisi Liu ◽  
...  
2018 ◽  
Vol 37 (2-3) ◽  
pp. 210-231 ◽  
Author(s):  
Feng Chen ◽  
Agnieszka Ludwiczuk ◽  
Guo Wei ◽  
Xinlu Chen ◽  
Barbara Crandall-Stotler ◽  
...  

Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3098 ◽  
Author(s):  
Weixuan Wang ◽  
Yuying Li ◽  
Pengqin Dang ◽  
Siji Zhao ◽  
Daowan Lai ◽  
...  

Rice (Oryza sativa L.) is an important food crop providing energy and nutrients for more than half of the world population. It produces vast amounts of secondary metabolites. At least 276 secondary metabolites from rice have been identified in the past 50 years. They mainly include phenolic acids, flavonoids, terpenoids, steroids, alkaloids, and their derivatives. These metabolites exhibit many physiological functions, such as regulatory effects on rice growth and development, disease-resistance promotion, anti-insect activity, and allelopathic effects, as well as various kinds of biological activities such as antimicrobial, antioxidant, cytotoxic, and anti-inflammatory properties. This review focuses on our knowledge of the structures, biological functions and activities, biosynthesis, and metabolic regulation of rice secondary metabolites. Some considerations about cheminformatics, metabolomics, genetic transformation, production, and applications related to the secondary metabolites from rice are also discussed.


Bionatura ◽  
2019 ◽  
Vol 4 (4) ◽  
pp. 1000-1009
Author(s):  
Irina Francesca González Mera ◽  
Daniela Estefanía González Falconí ◽  
Vivian Morera Córdova

Plants are an essential source of chemical compounds with different biological properties that man can use to his advantage. These substances are mainly produced as a result of chemical conversions of secondary metabolism. This article reviews the main classes of secondary metabolites that synthesize plants as well as their characteristics and their biological functions. Examples are provided for each of the classes. Emphasis is placed on the methods of extracting secondary metabolites and phytochemical screening, as well as on the main pharmacological activities described for the MS.


2009 ◽  
Vol 2 (4) ◽  
pp. 211-218 ◽  
Author(s):  
Eva Miadoková

Isoflavonoids — an overview of their biological activities and potential health benefitsThere are many biological activities attributed to isoflavonoids. The majority of them could be beneficial and some of them may be detrimental, depending on specific circumstances. Isoflavonoids play an important role in human nutrition as health promoting natural chemicals. They belong to plant secondary metabolites that mediate diverse biological functions through numerous pathways. They are structurally similar to estrogens, exerting both estrogenic and antiestrogenic properties in various tissues. The results of epidemiologic studies exploring the role of isoflavonoids in human health have been inconclusive. Some studies support the notion of a protective effect of their consumption in immunomodulation, cognition, risk reduction of certain cancers, cardiovascular and skin diseases, osteoporosis and obesity, as well as relief of menopausal symptoms. Other studies failed to demonstrate any effects.


Biologia ◽  
2006 ◽  
Vol 61 (4) ◽  
Author(s):  
Pavol Mártonfi ◽  
Miroslav Repčák ◽  
Lenka Mártonfiová

AbstractThe distribution patterns of flavonoids hyperoside, isoquercitrin, quercitrin, quercetin, I3,II8-biapigenin and naphtodianthrones hypericin and pseudohypericin were studied in reproductive structures during ontogenetic phase of flowering in Hypericum maculatum Crantz. Considerable differences in the content of these secondary metabolites, in the particular flower parts were found. The content of all the metabolites studied is stable during the whole period of flowering in green flower parts (sepals). In petals, stamens and pistils their content undergoes considerable change associated with the biological functions of particular metabolites. The most conspicuous changes during ontogenetic phase of flowering were the decrease of hyperoside and isoquercitrin content in petals (average content in buds 1.589 mg g−1 dry weight, average content in overblown flowers 0.891 mg g−1 dry weight), the decrease of the I3,II8-biapigenin content in stamens (in buds 1.189 mg g−1 dry weight, in overblown flowers 0.319 mg g−1 dry weight), and the increase of hypericin and pseudohypericin content in both petals (total average content of hypericins in the buds 0.547 mg g−1 dry weight; in overblown flowers 0.792 mg g−1 dry weight) and stamens (in buds 0.189 mg g−1 dry weight; in overblown flowers 0.431 mg g−1 dry weight). Hypericins are absent in the pistil. The flavonoids hyperoside and isoquercitrin, the content of which decreased during ontogenetic phase of flowering, reach the highest contents in the pistil.


Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1002 ◽  
Author(s):  
Marion Claverie ◽  
Colin McReynolds ◽  
Arnaud Petitpas ◽  
Martin Thomas ◽  
Susana C. M. Fernandes

The review covers recent literature on the ocean as both a source of biotechnological tools and as a source of bio-inspired materials. The emphasis is on marine biomacromolecules namely hyaluronic acid, chitin and chitosan, peptides, collagen, enzymes, polysaccharides from algae, and secondary metabolites like mycosporines. Their specific biological, physicochemical and structural properties together with relevant applications in biocomposite materials have been included. Additionally, it refers to the marine organisms as source of inspiration for the design and development of sustainable and functional (bio)materials. Marine biological functions that mimic reef fish mucus, marine adhesives and structural colouration are explained.


2020 ◽  
Vol 11 (10) ◽  
pp. 8547-8559
Author(s):  
Hongjing Zhao ◽  
Yu Wang ◽  
Mengyao Mu ◽  
Menghao Guo ◽  
Hongxian Yu ◽  
...  

Antibiotics are used worldwide to treat diseases in humans and other animals; most of them and their secondary metabolites are discharged into the aquatic environment, posing a serious threat to human health.


2015 ◽  
Vol 57 ◽  
pp. 177-187 ◽  
Author(s):  
Jennifer N. Byrum ◽  
William Rodgers

Since the inception of the fluid mosaic model, cell membranes have come to be recognized as heterogeneous structures composed of discrete protein and lipid domains of various dimensions and biological functions. The structural and biological properties of membrane domains are represented by CDM (cholesterol-dependent membrane) domains, frequently referred to as membrane ‘rafts’. Biological functions attributed to CDMs include signal transduction. In T-cells, CDMs function in the regulation of the Src family kinase Lck (p56lck) by sequestering Lck from its activator CD45. Despite evidence of discrete CDM domains with specific functions, the mechanism by which they form and are maintained within a fluid and dynamic lipid bilayer is not completely understood. In the present chapter, we discuss recent advances showing that the actomyosin cytoskeleton has an integral role in the formation of CDM domains. Using Lck as a model, we also discuss recent findings regarding cytoskeleton-dependent CDM domain functions in protein regulation.


Sign in / Sign up

Export Citation Format

Share Document