Forecasting the demand for tourism using combinations of forecasts by neural network-based interval grey prediction models

2021 ◽  
Vol 26 (12) ◽  
pp. 1350-1363
Author(s):  
Yi-Chung Hu
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Li-Hsin Cheng ◽  
Te-Cheng Hsu ◽  
Che Lin

AbstractBreast cancer is a heterogeneous disease. To guide proper treatment decisions for each patient, robust prognostic biomarkers, which allow reliable prognosis prediction, are necessary. Gene feature selection based on microarray data is an approach to discover potential biomarkers systematically. However, standard pure-statistical feature selection approaches often fail to incorporate prior biological knowledge and select genes that lack biological insights. Besides, due to the high dimensionality and low sample size properties of microarray data, selecting robust gene features is an intrinsically challenging problem. We hence combined systems biology feature selection with ensemble learning in this study, aiming to select genes with biological insights and robust prognostic predictive power. Moreover, to capture breast cancer's complex molecular processes, we adopted a multi-gene approach to predict the prognosis status using deep learning classifiers. We found that all ensemble approaches could improve feature selection robustness, wherein the hybrid ensemble approach led to the most robust result. Among all prognosis prediction models, the bimodal deep neural network (DNN) achieved the highest test performance, further verified by survival analysis. In summary, this study demonstrated the potential of combining ensemble learning and bimodal DNN in guiding precision medicine.


Author(s):  
Byunghyun Kang ◽  
Cheol Choi ◽  
Daeun Sung ◽  
Seongho Yoon ◽  
Byoung-Ho Choi

In this study, friction tests are performed, via a custom-built friction tester, on specimens of natural rubber used in automotive suspension bushings. By analyzing the problematic suspension bushings, the eleven candidate factors that influence squeak noise are selected: surface lubrication, hardness, vulcanization condition, surface texture, additive content, sample thickness, thermal aging, temperature, surface moisture, friction speed, and normal force. Through friction tests, the changes are investigated in frictional force and squeak noise occurrence according to various levels of the influencing factors. The degree of correlation between frictional force and squeak noise occurrence with the factors is determined through statistical tests, and the relationship between frictional force and squeak noise occurrence based on the test results is discussed. Squeak noise prediction models are constructed by considering the interactions among the influencing factors through both multiple logistic regression and neural network analysis. The accuracies of the two prediction models are evaluated by comparing predicted and measured results. The accuracies of the multiple logistic regression and neural network models in predicting the occurrence of squeak noise are 88.2% and 87.2%, respectively.


2021 ◽  
Vol 7 (3) ◽  
Author(s):  
Nagoor Basha Shaik ◽  
Kedar Mallik Mantrala ◽  
Balaji Bakthavatchalam ◽  
Qandeel Fatima Gillani ◽  
M. Faisal Rehman ◽  
...  

AbstractThe well-known fact of metallurgy is that the lifetime of a metal structure depends on the material's corrosion rate. Therefore, applying an appropriate prediction of corrosion process for the manufactured metals or alloys trigger an extended life of the product. At present, the current prediction models for additive manufactured alloys are either complicated or built on a restricted basis towards corrosion depletion. This paper presents a novel approach to estimate the corrosion rate and corrosion potential prediction by considering significant major parameters such as solution time, aging time, aging temperature, and corrosion test time. The Laser Engineered Net Shaping (LENS), which is an additive manufacturing process used in the manufacturing of health care equipment, was investigated in the present research. All the accumulated information used to manufacture the LENS-based Cobalt-Chromium-Molybdenum (CoCrMo) alloy was considered from previous literature. They enabled to create a robust Bayesian Regularization (BR)-based Artificial Neural Network (ANN) in order to predict with accuracy the material best corrosion properties. The achieved data were validated by investigating its experimental behavior. It was found a very good agreement between the predicted values generated with the BRANN model and experimental values. The robustness of the proposed approach allows to implement the manufactured materials successfully in the biomedical implants.


2021 ◽  
Vol 19 (2) ◽  
pp. 19-30
Author(s):  
G. Nagarajan ◽  
Dr.A. Mahabub Basha ◽  
R. Poornima

One main psychiatric disorder found in humans is ASD (Autistic Spectrum Disorder). The disease manifests in a mental disorder that restricts humans from communications, language, speech in terms of their individual abilities. Even though its cure is complex and literally impossible, its early detection is required for mitigating its intensity. ASD does not have a pre-defined age for affecting humans. A system for effectively predicting ASD based on MLTs (Machine Learning Techniques) is proposed in this work. Hybrid APMs (Autism Prediction Models) combining multiple techniques like RF (Random Forest), CART (Classification and Regression Trees), RF-ID3 (RF-Iterative Dichotomiser 3) perform well, but face issues in memory usage, execution times and inadequate feature selections. Taking these issues into account, this work overcomes these hurdles in this proposed work with a hybrid technique that combines MCSO (Modified Chicken Swarm Optimization) and PDCNN (Polynomial Distribution based Convolution Neural Network) algorithms for its objective. The proposed scheme’s experimental results prove its higher levels of accuracy, precision, sensitivity, specificity, FPRs (False Positive Rates) and lowered time complexity when compared to other methods.


Author(s):  
Zhendong Zhao ◽  
Changzheng Hu

With an increasing number of vehicles and increasing environmental protection requirements, countries have accelerated the rate of revision of automobile noise standards and legislation. Scientific prediction of the limiting values in future noise standards is helpful to promote the development of automobile noise reduction technology and measurement analysis technology. The development of noise standard limits has its own objective laws and is restricted to the current and future developments in automotive technology. The amplitude of noise will be reduced increasingly less in the future. Grey prediction theory can explore the variation rules by processing a few effective data. In this paper, grey theory is used to deal with the limited original data in the vehicle noise standard. Non-equal-interval quadratic fitting of the grey Verhulst direct model to predict the future noise standard limits is selected on the basis of calculation and comparison of different models. The Verhulst model is employed to describe the system development by using the characteristics of saturation. By means of quadratic fitting, the accuracy of the Verhulst model can be further improved. The simulation results show the validity and the accuracy of the model. The prediction result is useful for standards and regulations makers and for car manufacturers.


2012 ◽  
Vol 6-7 ◽  
pp. 1055-1060 ◽  
Author(s):  
Yang Bing ◽  
Jian Kun Hao ◽  
Si Chang Zhang

In this study we apply back propagation Neural Network models to predict the daily Shanghai Stock Exchange Composite Index. The learning algorithm and gradient search technique are constructed in the models. We evaluate the prediction models and conclude that the Shanghai Stock Exchange Composite Index is predictable in the short term. Empirical study shows that the Neural Network models is successfully applied to predict the daily highest, lowest, and closing value of the Shanghai Stock Exchange Composite Index, but it can not predict the return rate of the Shanghai Stock Exchange Composite Index in short terms.


Author(s):  
Eslam Mohammed Abdelkader ◽  
Osama Moselhi ◽  
Mohamed Marzouk ◽  
Tarek Zayed

Existing bridges are aging and deteriorating, raising concerns for public safety and the preservation of these valuable assets. Furthermore, the transportation networks that manage many bridges face budgetary constraints. This state of affairs necessitates the development of a computer vision-based method to alleviate shortcomings in visual inspection-based methods. In this context, the present study proposes a three-tier method for the automated detection and recognition of bridge defects. In the first tier, singular value decomposition ([Formula: see text]) is adopted to formulate the feature vector set through mapping the most dominant spatial domain features in images. The second tier encompasses a hybridization of the Elman neural network ([Formula: see text]) and the invasive weed optimization (I[Formula: see text]) algorithm to enhance the prediction performance of the ENN. This is accomplished by designing a variable optimization mechanism that aims at searching for the optimum exploration–exploitation trade-off in the neural network. The third tier involves validation through comparisons against a set of conventional machine-learning and deep-learning models capitalizing on performance prediction and statistical significance tests. A computerized platform was programmed in C#.net to facilitate implementation by the users. It was found that the method developed outperformed other prediction models achieving overall accuracy, F-measure, Kappa coefficient, balanced accuracy, Matthews’s correlation coefficient, and area under curve of 0.955, 0.955, 0.914, 0.965, 0.937, and 0.904, respectively as per cross validation. It is expected that the method developed can improve the decision-making process in bridge management systems.


Sign in / Sign up

Export Citation Format

Share Document