Converting classic data of salt tolerance into an allometric crop salinity response function

Author(s):  
Enrique Misle ◽  
Besma Kahlaoui
1991 ◽  
Vol 69 (11) ◽  
pp. 2497-2502 ◽  
Author(s):  
N. C. Kenkel ◽  
A. L. McIlraith ◽  
C. A. Burchill ◽  
G. Jones

Three grasses (Poa pratensis, Hordeum jubatum, and Puccinellia nuttalliana) were grown in monoculture and three-species mixture at each of eight salinity levels in a controlled environment chamber. In monoculture, all species grew best when no salts were added to the nutrient medium. When salts were added the species showed differing degrees of salt tolerance. Percent decreases in total biomass with increasing salinity and shifts in aboveground to belowground biomass ratios suggested increased salt tolerance in the order P. pratensis < H. jubatum < P. nuttalliana. In mixture, all species showed a significant change in salinity response when compared with their responses in monoculture. Interspecific competition resulted in P. pratensis being suppressed at all but the lowest salinities. Hordeum jubatum showed the least suppression at intermediate salinities, while P. nuttalliana was least suppressed at the highest salinities. These results indicate that interspecific competition results in a shift in the peak performance of more salt-tolerant species toward the high end of the salinity gradient. The species distributions in our experimental mixtures reflected those observed in the field, suggesting that competition plays an important role in structuring inland saline plant communities. Key words: halophyte, glycophyte, community, Hordeum jubatum, Puccinellia nuttalliana, Poa pratensis.


1991 ◽  
Vol 116 (2) ◽  
pp. 286-290 ◽  
Author(s):  
M.C. Bolarín ◽  
F.G. Fernández ◽  
V. Cruz ◽  
J. Cuartero

The salinity tolerances of 21 accessions belonging to four wild tomato species [Lycopersicon pimpinellifolium (Jusl.) Mill., L. peruvianum (Corr.) D'Arcy, L. hirsutum (L.) Mill., and L. pennellii Humb. Bonpl.) were evaluated using their vegetative yield-salinity response curves at the adult stage, determined by a piecewise-linear response model. The slope (yield decrease per unit salinity increase), salinity response threshold, maximum electrical conductivity without yield reduction (ECo), and salinity level for which yield would be zero (ECo) were determined by a nonlinear least-squares inversion method from curves based on the response of leaf and stem dry weights to substrate EC. The genotype PE-2 (L. pimpinellifolium) had the highest salt tolerance, followed by PE-45 (L. pennellii), PE-34, PE-43 (L. hirsutum), and PE-16 (L. peruvianum). The model also was tested replacing substrate salinity levels with leaf Cl- or Na+ concentrations. Concentrations of both ions for which vegetative yields were zero (Clo and Nao) were determined from the response curves. In general, the most tolerant genotypes were those with the highest Clo and Nao values, suggesting that the dominant salt-tolerance mechanism is ion accumulation, but there were cases in which salt tolerance was not related to Clo and Nao.


2010 ◽  
Vol 37 (10) ◽  
pp. 962 ◽  
Author(s):  
Li-Wei Ho ◽  
Ting-Ting Yang ◽  
Shyan-Shu Shieh ◽  
Gerald E. Edwards ◽  
Hungchen E. Yen

In this study we present the functional characterisation of SKD1 (suppressor of K+ transport growth defect) in salt tolerance of higher plants. SKD1 participates in endosome-mediated protein sorting and expression of SKD1 is salt-induced in Na+ storage cells of halophyte ice plant. Transgenic Arabidopsis with reduced SKD1 expression were generated by expressing AtSKD1 in antisense orientation. Relative root growth rate of antisense seedlings was slower than that of wild-type seedlings under salt treatment. The Na+/K+ ratio doubled in the antisense seedlings compared with the wild-type seedlings indicating a loss in Na+/K+ homeostasis. The PSII activity dropped following one week of salt-stress in antisense plants whereas wild-type plants maintained normal activity. Upon germination, transgenic seedlings developed multiple roots where each root had lower density of lateral roots. Application of 1-naphthaleneacetic acid restored the ability of transgenic seedlings to form lateral roots. Expression profiling analyses revealed that expressions of one stress-related kinase, several salt-induced transcription factors and one auxin efflux transporter were altered in antisense seedlings. With decreased expression of SKD1, plants experience a reduced salinity response and altered root development indicating the importance of intracellular vesicular trafficking in both auxin-mediated plant growth and in maintaining ion homeostasis under salt stress.


2021 ◽  
Vol 12 ◽  
Author(s):  
Emily Thoday-Kennedy ◽  
Sameer Joshi ◽  
Hans D. Daetwyler ◽  
Matthew Hayden ◽  
David Hudson ◽  
...  

Salinity is a major contributing factor to the degradation of arable land, and reductions in crop growth and yield. To overcome these limitations, the breeding of crop varieties with improved salt tolerance is needed. This requires effective and high-throughput phenotyping to optimize germplasm enhancement. Safflower (Carthamus tinctorius L.), is an underappreciated but highly versatile oilseed crop, capable of growing in saline and arid environments. To develop an effective and rapid phenotyping protocol to differentiate salt responses in safflower genotypes, experiments were conducted in the automated imaging facility at Plant Phenomics Victoria, Horsham, focussing on digital phenotyping at early vegetative growth. The initial experiment, at 0, 125, 250, and 350 mM sodium chloride (NaCl), showed that 250 mM NaCl was optimum to differentiate salt sensitive and tolerant genotypes. Phenotyping of a diverse set of 200 safflower genotypes using the developed protocol defined four classes of salt tolerance or sensitivity, based on biomass and ion accumulation. Salt tolerance in safflower was dependent on the exclusion of Na+ from shoot tissue and the maintenance of K+ uptake. Salinity response identified in glasshouse experiments showed some consistency with the performance of representatively selected genotypes tested under sodic field conditions. Overall, our results suggest that digital phenotyping can be an effective high-throughput approach in identifying candidate genotypes for salt tolerance in safflower.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
N. Pandeeswari ◽  
K. Sivakumar

Salinity seriously constrains crop yield in irrigated agriculture throughout the world. Also, salinity is a serious threat to agriculture in arid and semi arid regions. Nearly 10 % of the world’s land surface can be classified as endangered by salinity. Salinity in the soil and irrigation water is an environmental problem and a major constraint for crop production. Currently, 20 % of the world’s cultivated land is affected by salinity, which results in the loss of 50 % of agricultural yield. At present, there are nearly 954 million hectares of saline soils on the earth’s surface. All these salt affected soils are distributed throughout the world. The salinity response of legumes in general varies greatly depending on factors like climatic conditions, soil properties, salt tolerance and the stages of crop growth. Successful cultivation of legumes can be achieved by the selection and/or development of a salt-tolerant legume Rhizobium combination although high salinities are known to affect rhizobial activities. The aim of present study is the effect of strains of salt tolerant Rhizobia on IAA, EPS, nodule ARA activity, Nitrogen content, leghemoglobin content, siderophore production, IAR and salt concentration of Groundnut on coastal area of Cuddalore District of Tamil Nadu. The GNR CD-4 is the effect salt tolerance strain compared to other strains.


2013 ◽  
Vol 19 (2) ◽  
pp. 57-65
Author(s):  
MH Kabir ◽  
MM Islam ◽  
SN Begum ◽  
AC Manidas

A cross was made between high yielding salt susceptible BINA variety (Binadhan-5) with salt tolerant rice landrace (Harkuch) to identify salt tolerant rice lines. Thirty six F3 rice lines of Binadhan-5 x Harkuch were tested for salinity tolerance at the seedling stage in hydroponic system using nutrient solution. In F3 population, six lines were found as salt tolerant and 10 lines were moderately tolerant based on phenotypic screening at the seedling stage. Twelve SSR markers were used for parental survey and among them three polymorphic SSR markers viz., OSR34, RM443 and RM169 were selected to evaluate 26 F3 rice lines for salt tolerance. With respect to marker OSR34, 15 lines were identified as salt tolerant, 9 lines were susceptible and 2 lines were heterozygous. While RM443 identified 3 tolerant, 14 susceptible and 9 heterozygous rice lines. Eight tolerant, 11 susceptible and 7 heterozygous lines were identified with the marker RM169. Thus the tested markers could be efficiently used for tagging salt tolerant genes in marker-assisted breeding programme.DOI: http://dx.doi.org/10.3329/pa.v19i2.16929 Progress. Agric. 19(2): 57 - 65, 2008


Sign in / Sign up

Export Citation Format

Share Document