scholarly journals Topological feature vectors for exploring topological relationships

2009 ◽  
Vol 23 (3) ◽  
pp. 319-353 ◽  
Author(s):  
Reasey Praing ◽  
Markus Schneider
Author(s):  
A. Nagesh

The feature vectors of speaker identification system plays a crucial role in the overall performance of the system. There are many new feature vectors extraction methods based on MFCC, but ultimately we want to maximize the performance of SID system.  The objective of this paper to derive Gammatone Frequency Cepstral Coefficients (GFCC) based a new set of feature vectors using Gaussian Mixer model (GMM) for speaker identification. The MFCC are the default feature vectors for speaker recognition, but they are not very robust at the presence of additive noise. The GFCC features in recent studies have shown very good robustness against noise and acoustic change. The main idea is  GFCC features based on GMM feature extraction is to improve the overall speaker identification performance in low signal to noise ratio (SNR) conditions.


Author(s):  
Tu Huynh-Kha ◽  
Thuong Le-Tien ◽  
Synh Ha ◽  
Khoa Huynh-Van

This research work develops a new method to detect the forgery in image by combining the Wavelet transform and modified Zernike Moments (MZMs) in which the features are defined from more pixels than in traditional Zernike Moments. The tested image is firstly converted to grayscale and applied one level Discrete Wavelet Transform (DWT) to reduce the size of image by a half in both sides. The approximation sub-band (LL), which is used for processing, is then divided into overlapping blocks and modified Zernike moments are calculated in each block as feature vectors. More pixels are considered, more sufficient features are extracted. Lexicographical sorting and correlation coefficients computation on feature vectors are next steps to find the similar blocks. The purpose of applying DWT to reduce the dimension of the image before using Zernike moments with updated coefficients is to improve the computational time and increase exactness in detection. Copied or duplicated parts will be detected as traces of copy-move forgery manipulation based on a threshold of correlation coefficients and confirmed exactly from the constraint of Euclidean distance. Comparisons results between proposed method and related ones prove the feasibility and efficiency of the proposed algorithm.


2020 ◽  
Vol 28 (10) ◽  
pp. 2301-2310
Author(s):  
Chun-kang ZHANG ◽  
◽  
Hong-mei LI ◽  
Xia ZHANG

2021 ◽  
pp. 1357034X2199284
Author(s):  
Mickey Vallee

The aim of this article is to demonstrate that data modelling is becoming a crucial, if not dominant, vector for our understanding of animal populations and is consequential for how we study the affective relations between individual bodies and the communities to which they belong. It takes up the relationship between animal, body and data, following the datafication of starling murmurations, to explore the topological relationships between nature, culture and science. The case study thus embodies a data journey, invoking the tactics claimed by social or natural scientists, who generated recent discoveries in starling murmurations, including their topological expansions and contractions. The article concludes with thoughts and suggestions for further research on animal/data entanglement, and threads the concept of databodiment throughout, as a necessary dynamic for the formation and maintenance of communities.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1436
Author(s):  
Tuoru Li ◽  
Senxiang Lu ◽  
Enjie Xu

The internal detector in a pipeline needs to use the ground marker to record the elapsed time for accurate positioning. Most existing ground markers use the magnetic flux leakage testing principle to detect whether the internal detector passes. However, this paper uses the method of detecting vibration signals to track and locate the internal detector. The Variational Mode Decomposition (VMD) algorithm is used to extract features, which solves the defect of large noise and many disturbances of vibration signals. In this way, the detection range is expanded, and some non-magnetic flux leakage internal detectors can also be located. Firstly, the extracted vibration signals are denoised by the VMD algorithm, then kurtosis value and power value are extracted from the intrinsic mode functions (IMFs) to form feature vectors, and finally the feature vectors are input into random forest and Multilayer Perceptron (MLP) for classification. Experimental research shows that the method designed in this paper, which combines VMD with a machine learning classifier, can effectively use vibration signals to locate the internal detector and has the characteristics of high accuracy and good adaptability.


Author(s):  
Jochen Schiewe

AbstractMaps that correctly represent the geographic size and shape of regions, taking into account scaling and generalization, have the disadvantage that small regions can easily be overlooked or not seen at all. Hence, for some map use tasks where small regions are of importance, alternative map types are needed. One option is the so-called equal area unit maps (EAUMs), where every enumeration unit has the same area size, possibly also the same basic shape such as squares or hexagons. The geometrical distortion of EAUMs, however, leads to a more difficult search for regions as well as a falsification of topological relationships and spatial patterns. To describe these distortions, a set of analytical measures is proposed. But it turns out that the expressiveness of these measures is rather limited. To better understand and to model the influence of distortions, two user studies were conducted. The study on the search in EAUMs (also with the aim of reconstruct the search strategies of the users) revealed how important it is to consider the local topology (e.g. corner or border positions of regions) during the generation process. With regard to pattern identification, it could be shown that EAUMs significantly increase the detection rate of local extreme values. On the other hand, global lateral gradients or geostatistical hot spots often get blurred or even lost. As a consequence, a task-oriented selection of map types and further developments are recommended.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4638
Author(s):  
Bummo Koo ◽  
Jongman Kim ◽  
Yejin Nam ◽  
Youngho Kim

In this study, algorithms to detect post-falls were evaluated using the cross-dataset according to feature vectors (time-series and discrete data), classifiers (ANN and SVM), and four different processing conditions (normalization, equalization, increase in the number of training data, and additional training with external data). Three-axis acceleration and angular velocity data were obtained from 30 healthy male subjects by attaching an IMU to the middle of the left and right anterior superior iliac spines (ASIS). Internal and external tests were performed using our lab dataset and SisFall public dataset, respectively. The results showed that ANN and SVM were suitable for the time-series and discrete data, respectively. The classification performance generally decreased, and thus, specific feature vectors from the raw data were necessary when untrained motions were tested using a public dataset. Normalization made SVM and ANN more and less effective, respectively. Equalization increased the sensitivity, even though it did not improve the overall performance. The increase in the number of training data also improved the classification performance. Machine learning was vulnerable to untrained motions, and data of various movements were needed for the training.


Author(s):  
Yina Zhou ◽  
Yong Zhang ◽  
Jingyi Lu ◽  
Fan Yang ◽  
Hongli Dong ◽  
...  

Pipeline leakage is the main reason that affects normal operation of the pipeline. In this paper, a feature recognition method for pipeline acoustic signals based on vocational mode decomposition (VMD) and exponential entropy (EE) is investigated, which could extract the characteristics of pipeline signals and further accurately identify the pipeline acoustic signals under different working conditions. First, the VMD is used to decompose the collected acoustic signals into a number of mode components, during which process the optimal mode number (i.e., K-value) is determined by combining local characteristic scale decomposition (LCD) and correlation analysis methods. Then, the characteristic content of each mode component is analyzed with the help of the determined correlation coefficient (CC) threshold. If the correlation coefficient of a mode component is greater than the threshold, then the mode component is selected as the feature component. Subsequently, the EE values of the selected feature components are calculated to form the feature vectors corresponding to different kinds of pipeline signals. Finally, the feature vectors are input into support vector machine (SVM) to classify and recognize the different pipeline states. The experimental results demonstrate that the proposed method can identify the pipeline signals under different working conditions, and the recognition accuracy is up to [Formula: see text]. By analyzing and comparing with methods of EE-SVM, original data-SVM, VMD-singular spectrum entropy (SSE) and VMD-information entropy (IE), it is further verified that the proposed method is feasible and superior to the methods.


Sign in / Sign up

Export Citation Format

Share Document