Feature extraction method of pipeline signal based on parameter optimized vocational mode decomposition and exponential entropy

Author(s):  
Yina Zhou ◽  
Yong Zhang ◽  
Jingyi Lu ◽  
Fan Yang ◽  
Hongli Dong ◽  
...  

Pipeline leakage is the main reason that affects normal operation of the pipeline. In this paper, a feature recognition method for pipeline acoustic signals based on vocational mode decomposition (VMD) and exponential entropy (EE) is investigated, which could extract the characteristics of pipeline signals and further accurately identify the pipeline acoustic signals under different working conditions. First, the VMD is used to decompose the collected acoustic signals into a number of mode components, during which process the optimal mode number (i.e., K-value) is determined by combining local characteristic scale decomposition (LCD) and correlation analysis methods. Then, the characteristic content of each mode component is analyzed with the help of the determined correlation coefficient (CC) threshold. If the correlation coefficient of a mode component is greater than the threshold, then the mode component is selected as the feature component. Subsequently, the EE values of the selected feature components are calculated to form the feature vectors corresponding to different kinds of pipeline signals. Finally, the feature vectors are input into support vector machine (SVM) to classify and recognize the different pipeline states. The experimental results demonstrate that the proposed method can identify the pipeline signals under different working conditions, and the recognition accuracy is up to [Formula: see text]. By analyzing and comparing with methods of EE-SVM, original data-SVM, VMD-singular spectrum entropy (SSE) and VMD-information entropy (IE), it is further verified that the proposed method is feasible and superior to the methods.

Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 468 ◽  
Author(s):  
Dongri Xie ◽  
Hamada Esmaiel ◽  
Haixin Sun ◽  
Jie Qi ◽  
Zeyad A. H. Qasem

Due to the complexity and variability of underwater acoustic channels, ship-radiated noise (SRN) detected using the passive sonar is prone to be distorted. The entropy-based feature extraction method can improve this situation, to some extent. However, it is impractical to directly extract the entropy feature for the detected SRN signals. In addition, the existing conventional methods have a lack of suitable de-noising processing under the presence of marine environmental noise. To this end, this paper proposes a novel feature extraction method based on enhanced variational mode decomposition (EVMD), normalized correlation coefficient (norCC), permutation entropy (PE), and the particle swarm optimization-based support vector machine (PSO-SVM). Firstly, EVMD is utilized to obtain a group of intrinsic mode functions (IMFs) from the SRN signals. The noise-dominant IMFs are then eliminated by a de-noising processing prior to PE calculation. Next, the correlation coefficient between each signal-dominant IMF and the raw signal and PE of each signal-dominant IMF are calculated, respectively. After this, the norCC is used to weigh the corresponding PE and the sum of these weighted PE is considered as the final feature parameter. Finally, the feature vectors are fed into the PSO-SVM multi-class classifier to classify the SRN samples. The experimental results demonstrate that the recognition rate of the proposed methodology is up to 100%, which is much higher than the currently existing methods. Hence, the method proposed in this paper is more suitable for the feature extraction of SRN signals.


2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Jiancheng Gong ◽  
Xiaoqiang Yang ◽  
Fan Pan ◽  
Wuqiang Liu ◽  
Fuming Zhou

Rotating machinery refers to machinery that executes specific functions mainly relying on their rotation. They are widely used in engineering applications. Bearings and gearboxes play a key role in rotating machinery, and their states can directly affect the operation status of the whole rotating machinery. Accurate fault detection and judgment of bearing, gearbox, and other key parts are of great significance to the rotating machinery’s normal operation. A new fault feature extraction algorithm for rotating machinery called Improved Multivariate Multiscale Amplitude-Aware Permutation Entropy (ImvMAAPE) is proposed in this paper, and the application of an improved coarse-grained method in fault feature extraction of multichannel signals is realized in this method. This algorithm is combined with the Uniform Phase Empirical Mode Decomposition (UPEMD) method and the t-distributed Stochastic Neighbor Embedding (t-SNE) method, forming a new time-frequency multiscale feature extraction method. Firstly, the multichannel vibration signals are decomposed adaptively into sets of Intrinsic Mode Functions (IMFs) using UPEMD; then, the IMF components containing the main fault information are screened by correlation analysis to get the reconstructed signals. The ImvMAAPE values of the reconstructed signals are calculated to generate the initial high-dimensional fault features, and the t-SNE method with excellent nonlinear dimensionality reduction performance is then used to reduce the dimensionality of the initial high-dimensional fault feature vectors. Finally, the low dimensional feature vectors with high quality are input to the random forest (RF) classifier to identify and judge the fault types. Experiments were conducted to verify whether this method has higher accuracy and robustness than other methods.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3312 ◽  
Author(s):  
Jie Wu ◽  
Tang Tang ◽  
Ming Chen ◽  
Tianhao Hu

Bearings are critical parts of rotating machines, making bearing fault diagnosis based on signals a research hotspot through the ages. In real application scenarios, bearing signals are normally non-linear and unstable, and thus difficult to analyze in the time or frequency domain only. Meanwhile, fault feature vectors extracted conventionally with fixed dimensions may cause insufficiency or redundancy of diagnostic information and result in poor diagnostic performance. In this paper, Self-adaptive Spectrum Analysis (SSA) and a SSA-based diagnosis framework are proposed to solve these problems. Firstly, signals are decomposed into components with better analyzability. Then, SSA is developed to extract fault features adaptively and construct non-fixed dimension feature vectors. Finally, Support Vector Machine (SVM) is applied to classify different fault features. Data collected under different working conditions are selected for experiments. Results show that the diagnosis method based on the proposed diagnostic framework has better performance. In conclusion, combined with signal decomposition methods, the SSA method proposed in this paper achieves higher reliability and robustness than other tested feature extraction methods. Simultaneously, the diagnosis methods based on SSA achieve higher accuracy and stability under different working conditions with different sample division schemes.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Md. Mostafizur Rahman ◽  
Shaikh Anowarul Fattah

In view of recent increase of brain computer interface (BCI) based applications, the importance of efficient classification of various mental tasks has increased prodigiously nowadays. In order to obtain effective classification, efficient feature extraction scheme is necessary, for which, in the proposed method, the interchannel relationship among electroencephalogram (EEG) data is utilized. It is expected that the correlation obtained from different combination of channels will be different for different mental tasks, which can be exploited to extract distinctive feature. The empirical mode decomposition (EMD) technique is employed on a test EEG signal obtained from a channel, which provides a number of intrinsic mode functions (IMFs), and correlation coefficient is extracted from interchannel IMF data. Simultaneously, different statistical features are also obtained from each IMF. Finally, the feature matrix is formed utilizing interchannel correlation features and intrachannel statistical features of the selected IMFs of EEG signal. Different kernels of the support vector machine (SVM) classifier are used to carry out the classification task. An EEG dataset containing ten different combinations of five different mental tasks is utilized to demonstrate the classification performance and a very high level of accuracy is achieved by the proposed scheme compared to existing methods.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Wanlin Zhao ◽  
Zili Wang ◽  
Jian Ma ◽  
Lianfeng Li

The fault diagnosis of hydraulic pumps is currently important and significant to ensure the normal operation of the entire hydraulic system. Considering the nonlinear characteristics of hydraulic-pump vibration signals and the mode mixing problem of the original Empirical Mode Decomposition (EMD) method, first, we use the Complete Ensemble EMD (CEEMD) method to decompose the signals. Second, the time-frequency analysis methods, which include the Short-Time Fourier Transform (STFT) and time-frequency entropy calculation, are applied to realize the robust feature extraction. Third, the multiclass Support Vector Machine (SVM) classifier is introduced to automatically classify the fault mode in this paper. An actual hydraulic-pump experiment demonstrates the procedure with a complete feature extraction and accurate mode classification.


2011 ◽  
Vol 131 (8) ◽  
pp. 1495-1501
Author(s):  
Dongshik Kang ◽  
Masaki Higa ◽  
Hayao Miyagi ◽  
Ikugo Mitsui ◽  
Masanobu Fujita ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1436
Author(s):  
Tuoru Li ◽  
Senxiang Lu ◽  
Enjie Xu

The internal detector in a pipeline needs to use the ground marker to record the elapsed time for accurate positioning. Most existing ground markers use the magnetic flux leakage testing principle to detect whether the internal detector passes. However, this paper uses the method of detecting vibration signals to track and locate the internal detector. The Variational Mode Decomposition (VMD) algorithm is used to extract features, which solves the defect of large noise and many disturbances of vibration signals. In this way, the detection range is expanded, and some non-magnetic flux leakage internal detectors can also be located. Firstly, the extracted vibration signals are denoised by the VMD algorithm, then kurtosis value and power value are extracted from the intrinsic mode functions (IMFs) to form feature vectors, and finally the feature vectors are input into random forest and Multilayer Perceptron (MLP) for classification. Experimental research shows that the method designed in this paper, which combines VMD with a machine learning classifier, can effectively use vibration signals to locate the internal detector and has the characteristics of high accuracy and good adaptability.


Author(s):  
Chenguang Li ◽  
Hongjun Yang ◽  
Long Cheng

AbstractAs a relatively new physiological signal of brain, functional near-infrared spectroscopy (fNIRS) is being used more and more in brain–computer interface field, especially in the task of motor imagery. However, the classification accuracy based on this signal is relatively low. To improve the accuracy of classification, this paper proposes a new experimental paradigm and only uses fNIRS signals to complete the classification task of six subjects. Notably, the experiment is carried out in a non-laboratory environment, and movements of motion imagination are properly designed. And when the subjects are imagining the motions, they are also subvocalizing the movements to prevent distraction. Therefore, according to the motor area theory of the cerebral cortex, the positions of the fNIRS probes have been slightly adjusted compared with other methods. Next, the signals are classified by nine classification methods, and the different features and classification methods are compared. The results show that under this new experimental paradigm, the classification accuracy of 89.12% and 88.47% can be achieved using the support vector machine method and the random forest method, respectively, which shows that the paradigm is effective. Finally, by selecting five channels with the largest variance after empirical mode decomposition of the original signal, similar classification results can be achieved.


Sign in / Sign up

Export Citation Format

Share Document