Recommendations for Reducing Energy Consumption and Improving Air Quality Through Energy Efficiency on Native-American Lands

2006 ◽  
Vol 1 (3) ◽  
pp. 223-234
Author(s):  
Thomas L. Acker ◽  
William M. Auberle ◽  
John D. Eastwood ◽  
David R. Laroche ◽  
Amanda S. Ormond ◽  
...  
2018 ◽  
Vol 41 ◽  
pp. 03020 ◽  
Author(s):  
Evgeny Kuzin ◽  
Vladimir Bakin ◽  
Dmitriy Dubinkin

The Earth, being the main object and operational basis for mining, is exposed to the greatest impact because of extracting minerals. Protection of elements of the biosphere, including subsoil, should provide for the provision of scientifically based and economically justified completeness and complexity of use. The article discusses the need to monitor the technical condition of mining equipment, as applied to assessing its technical condition and reducing energy consumption by this equipment. The dependence of energy consumption on vibration parameters and temperature of equipment surfaces is shown. The data of the results of vibration parameters monitoring are given. Criteria are given for estimating the energy efficiency of operation of process equipment and, accordingly, the influence of these parameters on the environment.


2017 ◽  
Vol 68 (6) ◽  
pp. 496-502 ◽  
Author(s):  
Volodymyr Savkiv ◽  
Roman Mykhailyshyn ◽  
Frantisek Duchon ◽  
Mykhailo Mikhalishin

Abstract The article deals with the topical issue of reducing energy consumption for transportation of industrial objects. The energy efficiency of the process of objects manipulation with the use of the orientation optimization method while gripping with the help of different methods has been studied. The analysis of the influence of the constituent parts of inertial forces, that affect the object of manipulation, on the necessary force characteristics and energy consumption of Bernoulli gripping device has been proposed. The economic efficiency of the use of the optimal orientation of Bernoulli gripping device while transporting the object of manipulation in comparison to the transportation without re-orientation has been proved.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 98
Author(s):  
Effrosyni Giama

Buildings are responsible for approximately 30–40% of energy consumption in Europe, and this is a fact. Along with this fact is also evident the existence of a defined and strict legislation framework regarding energy efficiency, decarbonization, sustainability, and renewable energy systems in building applications. Moreover, information and communication technologies, along with smart metering for efficient monitoring, has come to cooperate with a building’s systems (smart buildings) to aim for more advanced and efficient energy management. Furthermore, the well-being in buildings still remains a crucial issue, especially nowadays that health and air quality are top priority goals for occupants. Taking all the above into consideration, this paper aims to analyze ventilation technologies in relation to energy consumption and environmental impact assessment using the life cycle approach. Based on the review analysis of the existing ventilation technologies, the emphasis is given to parameters related to the efficient technical design of ventilation systems and their adequate maintenance under the defined guidelines and standards of mechanical ventilation operation. These criteria can be the answer to the complicated issue of energy efficiency along with indoor air quality targets. The ventilation systems are presented in cooperation with heating and cooling system operations and renewable energy system applications ensuring an energy upgrade and reduced greenhouse gas emissions. Finally, the mechanical ventilation is examined in a non-residential building in Greece. The system is compared with the conventional construction typology of the building and in cooperation with PVs installation in terms of the environmental impact assessment and energy efficiency. The methodology implemented for the environmental evaluation is the Life Cycle Analysis supported by OpenLca software.


2021 ◽  
Vol 13 (9) ◽  
pp. 4810
Author(s):  
Alexander Melnik ◽  
Irina Naoumova ◽  
Kirill Ermolaev ◽  
Jerome Katrichis

Recent literature on energy efficiency focuses on the issues of energy security and options for reducing energy consumption. Measuring energy efficiency properly and forecasting future needs is critical to the energy policies of any country, especially given the importance of sustainability in their economic development. The role innovation plays in improving energy efficiency is well researched. There is a gap in examining an opposite relationship. That is, where energy efficiency becomes a critical factor for fueling innovation. This impact can occur within a company, a region, a nation or on an international level. Here we show that regions could motivate business innovations through policies requiring energy efficiency. Based on observations from a number of regions of an emerging economy, we show that energy efficiency impacts innovation. As a side effect it can contribute to export increases, which in turn can improve regional attractiveness for investors. We believe that the spiral development of the relationship between energy efficiency and innovation used as a strategy could become sustainable.


2020 ◽  
Author(s):  
◽  
Līva Asere

The largest energy consumer in Europe is the building sector, which uses about 40 % of total energy consumption and generates around 36 % of total CO2 emissions in the EU [1], [2]. Rising trends in energy consumption can be observed globally due to the demand of citizens for increased comfort, wider use of electrical equipment as well as other reasons. As energy consumption increases, climate change is promoted. In a number of areas energy could be used more efficiently, minimizing its consumption and, thus, resulting in a reduction of greenhouse gas emissions. To achieve carbon neutrality in 2050 in Europe Union, ambitious targets have been set, such as improving energy efficiency by 41 %, using 100 % of renewable energy sources and reducing greenhouse gas emissions of 80 % to 100 % [1], [3], [4]. Energy efficient buildings help to reduce heat consumption. State and local authorities need to set an example by improving the energy efficiency of their own buildings in order to encourage changes in other buildings as well. Moreover, the introduction of energy efficiency measures in buildings owned by the public sector contributes to the objectives of national climate policy. However, increasing energy efficiency has resulted in buildings becoming more airtight and natural ventilation systems need to be replaced by mechanical ventilation. However, this, in turn, leads to additional energy consumption costs. To avoid cost increases, building managers do not operate or operate unsatisfactory ventilation systems creating unfavourable indoor air quality. This creates a dilemma of energy efficiency and indoor air quality, which reduces performance of building occupants. This dilemma reduces pupils’ performance in educational buildings, reducing their chances of obtaining a good education and in the future working with higher added value which in turn reduces the country’s gross domestic product. The objective of the Thesis is to perform an assessment on energy efficiency – indoor air quality dilemma in educational buildings, its impact analyses on national prosperity, and to propose a solution to the prevention of the dilemma. The Thesis is based on six thematic joint scientific publications. The thesis consists of an introduction and three chapters. Four hypotheses have been formulated in the work that are further studied by various research methods, including system dynamic modelling, measurements in real sites and cost-benefit analysis. The thesis begins with an introduction continuing with a literature review of the topics. Chapter 2 presents the study methods. Chapter 3 examines the results obtained during the study and at the end of the Thesis, the findings are summarised according to the hypotheses.


Author(s):  
Ion-Costinel Mareș ◽  
Tiberiu Catalina ◽  
Marian-Andrei Istrate ◽  
Alexandra Cucoș ◽  
Tiberius Dicu ◽  
...  

The purpose of this article is the assessment of energy efficiency and indoor air quality for a single-family house located in Cluj-Napoca County, Romania. The studied house is meant to be an energy-efficient building with thermal insulation, low U-value windows, and a high efficiency boiler. Increasing the energy efficiency of the house leads to lower indoor air quality, due to lack of natural ventilation. As the experimental campaign regarding indoor air quality revealed, there is a need to find a balance between energy consumption and the quality of the indoor air. To achieve superior indoor air quality, the proposed mitigation systems (decentralized mechanical ventilation with heat recovery combined with a minimally invasive active sub-slab depressurization) have been installed to reduce the high radon level in the dwelling, achieving an energy reduction loss of up to 86%, compared to the traditional natural ventilation of the house. The sub-slab depressurization system was installed in the room with the highest radon level, while the local ventilation system with heat recovery has been installed in the exterior walls of the house. The results have shown significant improvement in the level of radon decreasing the average concentration from 425 to 70 Bq/m 3, respectively the carbon dioxide average of the measurements being around 760 ppm. The thermal comfort improves significantly also, by stabilizing the indoor temperature at 21 °C, without any important fluctuations. The installation of this system has led to higher indoor air quality, with low energy costs and significant energy savings compared to conventional ventilation (by opening windows).


2014 ◽  
Vol 986-987 ◽  
pp. 202-205
Author(s):  
Xin Lin Liao

Energy is the base of modern industrial economy. Basing on the data of cities and industries in Guangdong from 2000 to 2013, this paper analyzes the relationship of energy intensity, FDI and industrialization by regression model. The results show that the industrialization levels of the cities in Guangdong are in accordance with their energy consumption and economic conditions, and Guangdong should focus on the development of “win-win” industries which both increasing industrial output and reducing energy efficiency.


Sign in / Sign up

Export Citation Format

Share Document