Enhancing efficacy of existing antibacterials against selected multiple drug resistant bacteria using cinnamic acid-coated magnetic iron oxide and mesoporous silica nanoparticles

2021 ◽  
pp. 1-17
Author(s):  
Noor Akbar ◽  
Muhammad Kawish ◽  
Tooba Jabri ◽  
Naveed Ahmed Khan ◽  
Muhammad Raza Shah ◽  
...  
2018 ◽  
Vol 6 (7) ◽  
pp. 1923-1935 ◽  
Author(s):  
Xu Chen ◽  
Yanan Liu ◽  
Ange Lin ◽  
Na Huang ◽  
Liquan Long ◽  
...  

Efflux pump system-mediated bacterial multidrug resistance is one of the main causes of antibiotic failure.


2012 ◽  
Vol 78 (8) ◽  
pp. 2768-2774 ◽  
Author(s):  
Ashley N. Brown ◽  
Kathryn Smith ◽  
Tova A. Samuels ◽  
Jiangrui Lu ◽  
Sherine O. Obare ◽  
...  

ABSTRACTWe show here that silver nanoparticles (AgNP) were intrinsically antibacterial, whereas gold nanoparticles (AuNP) were antimicrobial only when ampicillin was bound to their surfaces. Both AuNP and AgNP functionalized with ampicillin were effective broad-spectrum bactericides against Gram-negative and Gram-positive bacteria. Most importantly, when AuNP and AgNP were functionalized with ampicillin they became potent bactericidal agents with unique properties that subverted antibiotic resistance mechanisms of multiple-drug-resistant bacteria.


2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Junaid Iqbal ◽  
Ruqaiyyah Siddiqui ◽  
Shahana Urooj Kazmi ◽  
Naveed Ahmed Khan

Antibiotic resistance continues to pose a significant problem in the management of bacterial infections, despite advances in antimicrobial chemotherapy and supportive care. Here, we suggest a simple, inexpensive, and easy-to-perform assay to screen antimicrobial compounds from natural products or synthetic chemical libraries for their potential to work in tandem with the available antibiotics against multiple drug-resistant bacteria. The aqueous extract ofJuglans regiatree bark was tested against representative multiple drug-resistant bacteria in the aforementioned assay to determine whether it potentiates the activity of selected antibiotics. The aqueous extract ofJ. regiabark was added to Mueller-Hinton agar, followed by a lawn of multiple drug-resistant bacteria,Salmonella typhior enteropathogenicE. coli. Next, filter paper discs impregnated with different classes of antibiotics were placed on the agar surface. Bacteria incubated with extract or antibiotics alone were used as controls. The results showed a significant increase (>30%) in the zone of inhibition around the aztreonam, cefuroxime, and ampicillin discs compared with bacteria incubated with the antibiotics/extract alone. In conclusion, our assay is able to detect either synergistic or additive action ofJ. regiaextract against multiple drug-resistant bacteria when tested with a range of antibiotics.


2019 ◽  
Vol 13 (1) ◽  
pp. 1-8
Author(s):  
Bhoj Raj Singh ◽  
Akanksha Yadav ◽  
Dharmendra Kumar Sinh ◽  
Obli Rajendran Vinodh Kum

Sign in / Sign up

Export Citation Format

Share Document