scholarly journals Explicit microstructure and electrical conductivity of epoxy/carbon nanotube and green silver nanoparticle enhanced hybrid dielectric composites

2021 ◽  
pp. 1-9
Author(s):  
Victor S. Aigbodion
Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1355
Author(s):  
Astrid Diekmann ◽  
Marvin C. V. Omelan ◽  
Ulrich Giese

Incorporating nanofillers into elastomers leads to composites with an enormous potential regarding their properties. Unfortunately, nanofillers tend to form agglomerates inhibiting adequate filler dispersion. Therefore, different carbon nanotube (CNT) pretreatment methods were analyzed in this study to enhance the filler dispersion in polydimethylsiloxane (PDMS)/CNT-composites. By pre-dispersing CNTs in solvents an increase in electrical conductivity could be observed within the sequence of tetrahydrofuran (THF) > acetone > chloroform. Optimization of the pre-dispersion step results in an AC conductivity of 3.2 × 10−4 S/cm at 1 Hz and 0.5 wt.% of CNTs and the electrical percolation threshold is decreased to 0.1 wt.% of CNTs. Optimum parameters imply the use of an ultrasonic finger for 60 min in THF. However, solvent residues cause a softening effect deteriorating the mechanical performance of these composites. Concerning the pretreatment of CNTs by physical functionalization, the use of surfactants (sodium dodecylbenzenesulfonate (SDBS) and polyoxyethylene lauryl ether (“Brij35”)) leads to no improvement, neither in electrical conductivity nor in mechanical properties. Chemical functionalization enhances the compatibility of PDMS and CNT but damages the carbon nanotubes due to the oxidation process so that the improvement in conductivity and reinforcement is superimposed by the CNT damage even for mild oxidation conditions.


Author(s):  
Chaimaa El Hajjaji ◽  
Nicolas Delhote ◽  
Serge Verdeyme ◽  
Malgorzata Piechowiak ◽  
Laurence Boyer ◽  
...  

Abstract In this work, microwave planar resonators are printed with silver nanoparticle inks using two printing technologies, inkjet printing and aerosol jet printing, on polyimide substrates. The microwave resonators used in this paper operate in the frequency band 5–21 GHz. The printing parameters, such as the number of printed layers of silver nanoparticle inks, drop spacing, and sintering time, were optimized to ensure repeatable and conductive test patterns. To improve the electrical conductivity of silver deposits, which are first dried using a hot plate or an oven, two complementary sintering methods are used: intense pulsed light (IPL) and laser sintering. This paper presents the results of different strategies for increasing the final quality factor of printed planar resonators and the trade-offs (sintering time versus final conductivity/unloaded Q) that can be reached. Improvement of the resonator unloaded quality factor (up to +55%) and of the equivalent electrical conductivity (up to 14.94 S/μm) at 14 GHz have been obtained thanks to these nonconventional sintering techniques. The total sintering durations of different combinations of sintering techniques (hot plate, oven, IPL, and laser) range from 960 to 90 min with a final conductivity from 14.94 to 7.1 S/μm at 14 GHz, respectively.


2021 ◽  
pp. 108128652110214
Author(s):  
Xiaodong Xia ◽  
George J. Weng

Recent experiments have revealed two distinct percolation phenomena in carbon nanotube (CNT)/polymer nanocomposites: one is associated with the electrical conductivity and the other is with the electromagnetic interference (EMI) shielding. At present, however, no theories seem to exist that can simultaneously predict their percolation thresholds and the associated conductivity and EMI curves. In this work, we present an effective-medium theory with electrical and magnetic interface effects to calculate the overall conductivity of a generally agglomerated nanocomposite and invoke a solution to Maxwell’s equations to calculate the EMI shielding effectiveness. In this process, two complex quantities, the complex electrical conductivity and complex magnetic permeability, are adopted as the homogenization parameters, and a two-scale model with CNT-rich and CNT-poor regions is utilized to depict the progressive formation of CNT agglomeration. We demonstrated that there is indeed a clear existence of two separate percolative behaviors and showed that, consistent with the experimental data of poly-L-lactic acid (PLLA)/multi-walled carbon nanotube (MWCNT) nanocomposites, the electrical percolation threshold is lower than the EMI shielding percolation threshold. The predicted conductivity and EMI shielding curves are also in close agreement with experimental data. We further disclosed that the percolative behavior of EMI shielding in the overall CNT/polymer nanocomposite can be illustrated by the establishment of connective filler networks in the CNT-poor region. It is believed that the present research can provide directions for the design of CNT/polymer nanocomposites in the EMI shielding components.


Carbon ◽  
2008 ◽  
Vol 46 (9) ◽  
pp. 1256-1258 ◽  
Author(s):  
Bunshi Fugetsu ◽  
Eiichi Sano ◽  
Masaki Sunada ◽  
Yuzuru Sambongi ◽  
Takao Shibuya ◽  
...  

Nanoscale ◽  
2017 ◽  
Vol 9 (37) ◽  
pp. 14192-14200 ◽  
Author(s):  
B. Aïssa ◽  
M. Nedil ◽  
J. Kroeger ◽  
M. I. Hossain ◽  
K. Mahmoud ◽  
...  

Materials offering excellent mechanical flexibility, high electrical conductivity and electromagnetic interference (EMI) attenuation with minimal thickness are in high demand, particularly if they can be easily processed into films.


Sign in / Sign up

Export Citation Format

Share Document