scholarly journals Saxagliptin enhances osteogenic differentiation in MC3T3-E1 cells, dependent on the activation of AMP-activated protein kinase α (AMPKα)/runt-related transcription factor-2 (Runx-2)

Bioengineered ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 431-439
Author(s):  
Qiang Wang ◽  
Xiaoxing Xie ◽  
Dehua Zhang ◽  
Feng Mao ◽  
Shaobo Wang ◽  
...  
2020 ◽  
Vol 10 (11) ◽  
pp. 1836-1845
Author(s):  
Tao Jiang ◽  
Qingzhen Chen ◽  
Min Shao ◽  
Zhen Shen ◽  
Gang Wang ◽  
...  

Activation of Protein Kinase AMP-Activated Catalytic Subunit Alpha (AMPKα) is an important regulatory pathway for osteogenic differentiation. STAT4 acts as a transcriptional activity factor to regulate the transcription of many genes and is potentially a regulatory factor for AMPKα transcription activity. To confirm the regulatory effect of STAT4 on AMPKα and the effect of STAT4 on osteogenic differentiation, the promoter sequence of AMPKα was analyzed via bioinformatics, the STAT4 overexpression vector was constructed and transfected into human osteoblast-like cells MG-63 by cationic liposome, fluorescence quantitative PCR (RT-qPCR) and western blotting technologies were used to detect the effect of STAT4 on the expression of AMPKα. MTT and ALP activity assays were also used to verify the effect of STAT4 on the proliferation and maturation of osteoblasts by regulating AMPKα expression. Our results showed that STAT4 was a co-transcriptional regulator of AMPKα1 and AMPKα2, which combined the enrichment region of CpG on the promoter sequence of AMPKα1/2. Overexpression of STAT4 significantly increased the expression of AMPKα1 and AMPKα2, which promoted the proliferation and maturation of osteoblasts. We concluded that STAT4 was a transcriptional activator of AMPKα and promoting STAT4 expression enhances the proliferation and differentiation activity of AMPKα in osteoblasts.


2015 ◽  
Vol 36 (4) ◽  
pp. 628-644 ◽  
Author(s):  
Katherine A. Braun ◽  
Kenneth M. Dombek ◽  
Elton T. Young

In the yeastSaccharomyces cerevisiae, the switch from respiratory metabolism to fermentation causes rapid decay of transcripts encoding proteins uniquely required for aerobic metabolism. Snf1, the yeast ortholog of AMP-activated protein kinase, has been implicated in this process because inhibiting Snf1 mimics the addition of glucose. In this study, we show that theSNF1-dependentADH2promoter, or just the major transcription factor binding site, is sufficient to confer glucose-induced mRNA decay upon heterologous transcripts.SNF1-independent expression from theADH2promoter prevented glucose-induced mRNA decay without altering the start site of transcription.SNF1-dependent transcripts are enriched for the binding motif of the RNA binding protein Vts1, an important mediator of mRNA decay and mRNA repression whose expression is correlated with decreased abundance ofSNF1-dependent transcripts during the yeast metabolic cycle. However, deletion ofVTS1did not slow the rate of glucose-induced mRNA decay.ADH2mRNA rapidly dissociated from polysomes after glucose repletion, and sequences bound by RNA binding proteins were enriched in the transcripts from repressed cells. Inhibiting the protein kinase A pathway did not affect glucose-induced decay ofADH2mRNA. Our results suggest that Snf1 may influence mRNA stability by altering the recruitment activity of the transcription factor Adr1.


Sign in / Sign up

Export Citation Format

Share Document