RECYCLING OF POLYMERIC MATERIALS USED FOR FOOD PACKAGING: CURRENT STATUS AND PERSPECTIVES

2001 ◽  
Vol 17 (3) ◽  
pp. 291-346 ◽  
Author(s):  
I. S. Arvanitoyannis ◽  
L. A. Bosnea
Foods ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 2
Author(s):  
Pavel Pleva ◽  
Lucie Bartošová ◽  
Daniela Máčalová ◽  
Ludmila Zálešáková ◽  
Jana Sedlaříková ◽  
...  

Biofilm is a structured community of microorganisms adhering to surfaces of various polymeric materials used in food packaging. Microbes in the biofilm may affect food quality. However, the presence of biofilm can ensure biodegradation of discarded packaging. This work aims to evaluate a biofilm formation on the selected biodegradable polymer films: poly (lactic acid) (PLA), poly (butylene adipate-co-terephthalate) (PBAT), and poly (butylene succinate) (PBS) by selected bacterial strains; collection strains of Escherichiacoli, Staphylococcusaureus; and Bacillus pumilus, Bacillussubtilis, Bacillustequilensis, and Stenotrophomonasmaltophilia isolated from dairy products. Three different methods for biofilm evaluation were performed: the Christensen method, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and fluorescence microscopy. High biofilm formation was confirmed on the control PBS film, whereas low biofilm formation ability was observed on the PLA polymer sample. Furthermore, the films with incorporated antimicrobial compounds (thymol or eugenol) were also prepared. Antimicrobial activity and also reduction in biofilm formation on enriched polymer films were determined. Therefore, they were all proved to be antimicrobial and effective in reducing biofilm formation. These films can be used to prepare novel active food packaging for the dairy industry to prevent biofilm formation and enhance food quality and safety in the future.


2021 ◽  
pp. 089270572110138
Author(s):  
Rada-Mendoza Maite ◽  
Chito-Trujillo Diana ◽  
Hoyos-Saavedra Olga Lucía ◽  
Arciniegas-Herrera Jose Luis ◽  
Molano-Tobar Nancy Janneth

The current trends in biodegradable food packaging include the use of materials such as biopolymers which should be free of toxic metals to ensure their quality and use in multiple applications. However, these samples can contain zinc given its presence in the materials used to make them. In this study, a method to determine the concentration of zinc (Zn) in thermoformed and biodegradable flexible films samples based on Cassava and in their raw materials (flour, starch and fique) using flame-atomic absorption spectroscopy is described. Prior, an acid digestion with nitric acid under reflux was required. The method was standardized by means of the evaluation of statistical parameters. The method was sufficiently lineal ( R2 = 0.999) in a working range from 0.1 to 1.0 mg Zn/L with detection and quantification limits of 0.03 and 0.82 mg/L, respectively. The method was found to be precise and accurate, and could therefore be used to measure Zn content at levels well below safe limits.The precision of the method was evaluated using intermediate precision and repeatability which showed coefficients of variation less than 6.7% and 4.7%, respectively. The percentages of recovery ranged from 96.5% to 98.2%. The method was successfully applied for the determination of Zn in the studied biopolymers samples and the results obtained support the method’s suitability for determining the presence of the metal. Zinc concentrations in thermoformed, flexible films and flour were below 2.36, 2.14 and 2.01 mg/L, respectively, indicating that these polymers could be used for food containers.


2019 ◽  
Vol 20 (3) ◽  
pp. 601 ◽  
Author(s):  
Bruna Agrillo ◽  
Marco Balestrieri ◽  
Marta Gogliettino ◽  
Gianna Palmieri ◽  
Rosalba Moretta ◽  
...  

Food packaging is not only a simple protective barrier, but a real “active” component, which is expected to preserve food quality, safety and shelf-life. Therefore, the materials used for packaging production should show peculiar features and properties. Specifically, antimicrobial packaging has recently gained great attention with respect to both social and economic impacts. In this paper, the results obtained by using a polymer material functionalized by a small synthetic peptide as “active” packaging are reported. The surface of Polyethylene Terephthalate (PET), one of the most commonly used plastic materials in food packaging, was plasma-activated and covalently bio-conjugated to a bactenecin-derivative peptide named 1018K6, previously characterized in terms of antimicrobial and antibiofilm activities. The immobilization of the peptide occurred at a high yield and no release was observed under different environmental conditions. Moreover, preliminary data clearly demonstrated that the “active” packaging was able to significantly reduce the total bacterial count together with yeast and mold spoilage in food-dairy products. Finally, the functionalized-PET polymer showed stronger efficiency in inhibiting biofilm growth, using a Listeria monocytogenes strain isolated from food products. The use of these “active” materials would greatly decrease the risk of pathogen development and increase the shelf-life in the food industry, showing a real potential against a panel of microorganisms upon exposure to fresh and stored products, high chemical stability and re-use possibility.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 613
Author(s):  
Dania Olmos ◽  
Javier González-Benito

Infections caused by bacteria are one of the main causes of mortality in hospitals all over the world. Bacteria can grow on many different surfaces and when this occurs, and bacteria colonize a surface, biofilms are formed. In this context, one of the main concerns is biofilm formation on medical devices such as urinary catheters, cardiac valves, pacemakers or prothesis. The development of bacteria also occurs on materials used for food packaging, wearable electronics or the textile industry. In all these applications polymeric materials are usually present. Research and development of polymer-based antibacterial materials is crucial to avoid the proliferation of bacteria. In this paper, we present a review about polymeric materials with antibacterial materials. The main strategies to produce materials with antibacterial properties are presented, for instance, the incorporation of inorganic particles, micro or nanostructuration of the surfaces and antifouling strategies are considered. The antibacterial mechanism exerted in each case is discussed. Methods of materials preparation are examined, presenting the main advantages or disadvantages of each one based on their potential uses. Finally, a review of the main characterization techniques and methods used to study polymer based antibacterial materials is carried out, including the use of single force cell spectroscopy, contact angle measurements and surface roughness to evaluate the role of the physicochemical properties and the micro or nanostructure in antibacterial behavior of the materials.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 769
Author(s):  
Vlad Mihalca ◽  
Andreea Diana Kerezsi ◽  
Achim Weber ◽  
Carmen Gruber-Traub ◽  
Jürgen Schmucker ◽  
...  

Food packaging is an area of interest not just for food producers or food marketing, but also for consumers who are more and more aware about the fact that food packaging has a great impact on food product quality and on the environment. The most used materials for the packaging of food are plastic, glass, metal, and paper. Still, over time edible films have become widely used for a variety of different products and different food categories such as meat products, vegetables, or dairy products. For example, proteins are excellent materials used for obtaining edible or non-edible coatings and films. The scope of this review is to overview the literature on protein utilization in food packages and edible packages, their functionalization, antioxidant, antimicrobial and antifungal activities, and economic perspectives. Different vegetable (corn, soy, mung bean, pea, grass pea, wild and Pasankalla quinoa, bitter vetch) and animal (whey, casein, keratin, collagen, gelatin, surimi, egg white) protein sources are discussed. Mechanical properties, thickness, moisture content, water vapor permeability, sensorial properties, and suitability for the environment also have a significant impact on protein-based packages utilization.


Author(s):  
Marcelo Torres Piza Paes ◽  
Antonio Marcos Rego Motta ◽  
Lauro Lemos Lontra Filho ◽  
Juliano Ose´ias de Morais ◽  
Sine´sio Domingues Franco

Scratching abrasion due to rubbing against the sediment layer is an important degradation mechanism of flexible cable in deep water oil and natural gas exploitation. The present study was initiated to gain relevant data on the wear behaviour of some commercial materials used to externally protect these cables. So, Comparison tests were carried out using the single-point scratching technique, which consists of a sharp point mounted at the extremity of a pendulum. The energy dissipated during the scratching is used to evaluate the relative scratch resistance. The results showed, that the contact geometry strongly affects the specific scratching energy. Using SEM imaging, it was found, that these changes were related to the operating wear mechanisms. The observed wear mechanisms are also compared with those observed on some cables in deep water operations.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2133
Author(s):  
Helena Oliver-Ortega ◽  
Josep Tresserras ◽  
Fernando Julian ◽  
Manel Alcalà ◽  
Alba Bala ◽  
...  

Packaging consumes around 40% of the total plastic production. One of the most important fields with high requirements is food packaging. Food packaging products have been commonly produced with petrol polymers, but due to environmental concerns, the market is being moved to biopolymers. Poly (lactic acid) (PLA) is the most promising biopolymer, as it is bio-based and biodegradable, and it is well established in the market. Nonetheless, its barrier properties need to be enhanced to be competitive with other polymers such as polyethylene terephthalate (PET). Nanoclays improve the barrier properties of polymeric materials if correct dispersion and exfoliation are obtained. Thus, it marks a milestone to obtain an appropriate dispersion. A predispersed methodology is proposed as a compounding process to improve the dispersion of these composites instead of common melt procedures. Afterwards, the effect of the polarity of the matrix was analyzing using polar and surface modified nanoclays with contents ranging from 2 to 8% w/w. The results showed the suitability of the predispersed and concentrated compound, technically named masterbatch, to obtain intercalated structures and the higher dispersion of polar nanoclays. Finally, the mechanical performance and sustainability of the prepared materials were simulated in a food tray, showing the best assessment of these materials and their lower fingerprint.


2015 ◽  
Author(s):  
Michael D. Kempe ◽  
David C. Miller ◽  
Dylan L. Nobles ◽  
Keiichiro Sakurai ◽  
John Tucker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document