scholarly journals Staurosporine inhibits agrin-induced acetylcholine receptor phosphorylation and aggregation.

1994 ◽  
Vol 125 (3) ◽  
pp. 661-668 ◽  
Author(s):  
B G Wallace

Agrin, a protein that mediates nerve-induced acetylcholine receptor (AChR) aggregation at developing neuromuscular junctions, has been shown to cause an increase in phosphorylation of the beta, gamma, and delta subunits of AChRs in cultured myotubes. As a step toward understanding the mechanism of agrin-induced AChR aggregation, we examined the effects of inhibitors of protein kinases on AChR aggregation and phosphorylation in chick myotubes in culture. Staurosporine, an antagonist of both protein serine and tyrosine kinases, blocked agrin-induced AChR aggregation in a dose-dependent manner; 50% inhibition occurred at approximately 2 nM. The extent of inhibition was independent of agrin concentration, suggesting an effect downstream of the interaction of agrin with its receptor. Staurosporine blocked agrin-induced phosphorylation of the AChR beta subunit, which occurs at least in part on tyrosine residues, but did not reduce phosphorylation of the gamma and delta subunits, which occurs on serine/threonine residues. Staurosporine also prevented the agrin-induced decrease in the rate at which AChRs are extracted from intact myotubes by mild detergents. H-7, an antagonist of protein serine kinases, inhibited agrin-induced phosphorylation of the gamma and delta subunits but did not block agrin-induced phosphorylation of the AChR beta subunit, AChR aggregation, or the decrease in AChR extractability. The results provide support for the hypothesis that tyrosine phosphorylation of the beta subunit plays a role in agrin-induced AChR aggregation.

2021 ◽  
Vol 15 ◽  
Author(s):  
Guokun Zhou ◽  
Xiang-ming Zha

Persistent acidosis occurs in ischemia and multiple neurological diseases. In previous studies, acidic stimulation leads to rapid increase in intracellular calcium in neurons. However, it remains largely unclear how a prolonged acidosis alters neuronal signaling. In our previous study, we found that GPR68-mediated PKC activities are protective against acidosis-induced injury in cortical slices. Here, we first asked whether the same principle holds true in organotypic hippocampal slices. Our data showed that 1-h pH 6 induced PKC phosphorylation in a GPR68-dependent manner. Go6983, a PKC inhibitor worsened acidosis-induced neuronal injury in wild type (WT) but had no effect in GPR68−/− slices. Next, to gain greater insights into acid signaling in brain tissue, we treated organotypic hippocampal slices with pH 6 for 1-h and performed a kinome profiling analysis by Western blot. Acidosis had little effect on cyclin-dependent kinase (CDK) or casein kinase 2 activity, two members of the CMGC family, or Ataxia telangiectasia mutated (ATM)/ATM and RAD3-related (ATR) activity, but reduced the phosphorylation of MAPK/CDK substrates. In contrast, acidosis induced the activation of CaMKIIα, PKA, and Akt. Besides these serine/threonine kinases, acidosis also induced tyrosine phosphorylation. Since GPR68 is widely expressed in brain neurons, we asked whether GPR68 contributes to acidosis-induced signaling. Deleting GPR68 had no effect on acidosis-induced CaMKII phosphorylation, attenuated that of phospho-Akt and phospho-PKA substrates, while abolishing acidosis-induced tyrosine phosphorylation. These data demonstrate that prolonged acidosis activates a network of signaling cascades, mediated by AGC kinases, CaMKII, and tyrosine kinases. GPR68 is the primary mediator for acidosis-induced activation of PKC and tyrosine phosphorylation, while both GPR68-dependent and -independent mechanisms contribute to the activation of PKA and Akt.


Blood ◽  
1993 ◽  
Vol 81 (6) ◽  
pp. 1535-1539
Author(s):  
H Yagura ◽  
N Oyaizu ◽  
S Pahwa

In this study, we analyzed tyrosine phosphorylation of guanosine triphosphatase (GTPase) activating protein in human B cells stimulated through surface IgG, using Western blot and immunoprecipitation. Stimulation through surface IgG induced the tyrosine phosphorylation of GTPase-activating protein (GAP) and two associated proteins, a 190-Kd protein and a 62-Kd protein, within 1 minute and in a dose-dependent manner. This tyrosine phosphorylation was blocked by Genistein (Extrasynthese, Genay, France). These data suggest that GTPase- activating protein is involved in a signal transduction pathway initiated from surface IgG in human B cells.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3541-3541
Author(s):  
Swaminathan Murugappan ◽  
Haripriya Shankar ◽  
Satya Kunapuli

Abstract Protein kinase C (PKC)-δ is a novel PKC that has been shown to be tyrosine phosphorylated upon stimulation with agonists in platelets. Tyrosine phosphorylation of PKCδ has been shown to occur in a Fyn-dependent manner downstream of glycoprotein VI (GPVI) signaling in platelets. Although thrombin causes tyrosine phosphorylation of PKCδ in platelets, the mechanism of this event is not elucidated. In this study, we investigated whether G-protein signaling pathways utilize similar pathways as GPVI in tyrosine phosphorylation of PKCδ. Protease activated receptor (PAR) -1 selective peptide, SFLLRN and PAR - 4 selective peptide, AYPGKF caused a time- and concentration-dependent increase in tyrosine phosphorylation of PKCδ in human platelets. However, AYPGKF failed to cause tyrosine phosphorylation of PKCδ in Gq-deficient mouse platelets. Both U73122, a phospholipase C (PLC) inhibitor, and dimethyl-BAPTA, an intracellular calcium chelator, inhibited the tyrosine phosphorylation of PKCδ downstream of the PAR activation suggesting a role for Gq/PLC pathways and intracellular calcium in mediating this event. Inhibition of PKC isoforms using GF109203X potentiated the tyrosine phosphorylation of PKCδ. The Src family tyrosine kinase inhibitors, PP1 and PP2 inhibited the tyrosine phosphorylation of PKCδ suggesting a role for Src family tyrosine kinase members in this event. We also found that both Lyn and Src are physically associated with PKCδ in a constitutive manner in platelets. Finally we found that there was a time-dependent activation of Src following activation of platelets with thrombin. Thus, the precomplexed Src and Lyn tyrosine kinases get activated following PAR stimulation resulting in the tyrosine phosphorylation of PKCδ. All these data indicate that tyrosine phosphorylation of PKCδ downstream of thrombin occurs in a calcium- and Src-family kinase dependent manner in human platelets.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3357-3357
Author(s):  
Renate Burger ◽  
Steven Legouill ◽  
Yu-Tzu Tai ◽  
Reshma Shringarpure ◽  
Klaus Podar ◽  
...  

Abstract In multiple myeloma (MM), IL-6 plays an important role for tumor cell growth, survival, and drug resistance. Janus kinases (JAKs) are protein tyrosine kinases and constitutively associated with the gp130 chain of the IL-6 receptor complex. Their activation is one of the first steps in cytokine receptor-mediated signaling and critical for virtually all subsequent downstream signaling cascades. INCB20 is a small-molecule synthetic compound which, in biochemical assays, potently inhibited all four JAKs with IC50 values between 0.3 nM and 1.2 nM (for comparison, IC50 of AG490, another JAK inhibitor, was >50 μM). Consistent with the central role of JAKs in gp130-mediated signaling, INCB20 inhibited IL-6 induced phosphorylation of SHP-2, STAT1, STAT3, ERK1/2, and AKT in MM1.S cells. In contrast, AKT phosphorylation induced by IGF-1 remained unchanged. Evaluation of the cellular efficacy of INCB20 was performed using the IL-6 dependent INA -6 cell line. Growth of INA-6 cells was inhibited in a dose-dependent manner with an IC50 of approx. 0.5 μM, as measured by [3H]-thymidine uptake and an MTS-based assay (for comparison, the cellular IC50 of AG490 was 15–20 μM). This correlated with an increase in the percentage of apoptotic cells, as evaluated by Apo2.7 staining after 48 hours. Importantly, INA-6 growth was inhibited in the presence of bone marrow stromal cells accompanied by a decrease in phospho-STAT3 levels. Furthermore, in a subcutaneous INA-6-SCID model, INCB20 inhibited tumor growth (and phosphorylated STAT3) in a dose-dependent manner. Our studies provide the conceptual basis for the use of JAK inhibitors as a therapeutic approach in MM.


1994 ◽  
Vol 14 (2) ◽  
pp. 1308-1321 ◽  
Author(s):  
M Autero ◽  
J Saharinen ◽  
T Pessa-Morikawa ◽  
M Soula-Rothhut ◽  
C Oetken ◽  
...  

Src family protein tyrosine kinases (PTKs) play an essential role in antigen receptor-initiated lymphocyte activation. Their activity is largely regulated by a negative regulatory tyrosine which is a substrate for the activating action of the CD45 phosphotyrosine phosphatase (PTPase) or, conversely, the suppressing action of the cytosolic p50csk PTK. Here we report that CD45 was phosphorylated by p50csk on two tyrosine residues, one of them identified as Tyr-1193. This residue was not phosphorylated by T-cell PTKs p56lck and p59fyn. Tyr-1193 was phosphorylated in intact T cells, and phosphorylation increased upon treatment with PTPase inhibitors, indicating that this tyrosine is a target for a constitutively active PTK. Cotransfection of CD45 and csk into COS-1 cells caused tyrosine phosphorylation of CD45 in the intact cells. Tyrosine-phosphorylated CD45 bound p56lck through the SH2 domain of the kinase. Finally, p50csk-mediated phosphorylation of CD45 caused a severalfold increase in its PTPase activity. Our results show that direct tyrosine phosphorylation of CD45 can affect its activity and association with Src family PTKs and that this phosphorylation could be mediated by p50csk. If this is also true in the intact cells, it adds a new dimension to the physiological function of p50csk in T lymphocytes.


1986 ◽  
Vol 234 (3) ◽  
pp. 527-535 ◽  
Author(s):  
R S Horn ◽  
E Lystad ◽  
A Adler ◽  
O Walaas

When sarcolemma membranes isolated from rat skeletal muscle were incubated with [gamma-32P]ATP, a membrane protein of apparent Mr 95,000 was rapidly phosphorylated, with the 32P content reaching a maximum within 2 s. On the basis of immunoprecipitation with anti-insulin-receptor antiserum, phosphoamino acid analysis and Mr, this protein probably represents the beta-subunit of the insulin receptor. Similarly, on incubation of the membrane with adenosine 5′-[gamma-[35S]thio] triphosphate the 95 kDa protein was thiophosphorylated, indicating thiophosphorylation of the beta-subunit of the insulin receptor on the basis of immunoprecipitation studies. The effect of insulin on the phosphorylation of this protein in the membrane was studied. Insulin induced a 20% decrease in the 32P labelling of the protein when the membranes were phosphorylated for 10 s. This insulin effect was dose-dependent, with half-maximal effect obtained at 2-3 nM-insulin. Addition of GTP, but not GDP or guanosine 5′-[beta, gamma-imido]triphosphate, enhanced the effect to 35% inhibition, with half-maximal effect of GTP obtained at 0.5 microM. GTP had no effect on the phosphorylation of the protein in the absence of insulin. Analysis of this insulin effect showed that insulin increased the rate of dephosphorylation of the 95 kDa protein in the membrane. In contrast, insulin had no effect on thiophosphorylation of the 95 kDa membrane protein after incubation with adenosine 5′-[gamma-[35S]thio]triphosphate. Since thiophosphorylated proteins are less sensitive to phosphatase action, these investigations suggest that insulin stimulated a protein phosphatase activity in a GTP-dependent manner. The possibility that GTP-regulatory proteins are involved in the action of insulin on the phosphorylation of the insulin receptor and other membrane proteins is discussed.


Blood ◽  
1993 ◽  
Vol 82 (4) ◽  
pp. 1212-1220 ◽  
Author(s):  
GL Schieven ◽  
JM Kirihara ◽  
DE Myers ◽  
JA Ledbetter ◽  
FM Uckun

We have previously observed that ionizing radiation induces tyrosine phosphorylation in human B-lymphocyte precursors by stimulation of unidentified tyrosine kinases and this phosphorylation is substantially augmented by vanadate. Ionizing radiation generates reactive oxygen intermediates (ROI). Because H2O2 is a potent ROI generator that readily crosses the plasma membrane, we used H2O2 to examine the effects of ROI on signal transduction. We now provide evidence that the tyrosine kinase inhibitor herbimycin A and the free radical scavenger N- acetyl-cysteine inhibit both radiation-induced and H2O2-induced activation of NF-kappa B, indicating that activation triggered by ROI is dependent on tyrosine kinase activity. H2O2 was found to stimulate Ins-1,4,5-P3 production in a tyrosine kinase-dependent manner and to induce calcium signals that were greatly augmented by vanadate. The synergistic induction of tyrosine phosphorylation by H2O2 plus vanadate included physiologically relevant proteins such as PLC gamma 1. Although treatment of cells with H2O2 alone did not affect the activity of src family kinases, treatment with H2O2 plus vanadate led to activation of the p56lck and p59fyn tyrosine kinases. The combined inhibition of phosphatases and activation of kinases provides a potent mechanism for the synergistic effects of H2O2 plus vanadate. Induction of tyrosine phosphorylation by ROI may thus lead to many of the pleiotropic effects of ROI in lymphoid cells, including downstream activation of PLC gamma 1 and NF-kappa B.


Blood ◽  
1993 ◽  
Vol 81 (6) ◽  
pp. 1535-1539 ◽  
Author(s):  
H Yagura ◽  
N Oyaizu ◽  
S Pahwa

Abstract In this study, we analyzed tyrosine phosphorylation of guanosine triphosphatase (GTPase) activating protein in human B cells stimulated through surface IgG, using Western blot and immunoprecipitation. Stimulation through surface IgG induced the tyrosine phosphorylation of GTPase-activating protein (GAP) and two associated proteins, a 190-Kd protein and a 62-Kd protein, within 1 minute and in a dose-dependent manner. This tyrosine phosphorylation was blocked by Genistein (Extrasynthese, Genay, France). These data suggest that GTPase- activating protein is involved in a signal transduction pathway initiated from surface IgG in human B cells.


2020 ◽  
Vol 295 (31) ◽  
pp. 10677-10688
Author(s):  
Po-Ju Chen ◽  
Diego Zelada ◽  
Dina Cheryne Belhasan ◽  
Mohammed Akaaboune

The maintenance of a high density of the acetylcholine receptor (AChR) is the hallmark of the neuromuscular junction. Muscle-specific anchoring protein (αkap) encoded within the calcium/calmodulin-dependent protein kinase IIα (CAMK2A) gene is essential for the maintenance of AChR clusters both in vivo and in cultured muscle cells. The underlying mechanism by which αkap is maintained and regulated remains unknown. Here, using human cell lines, fluorescence microscopy, and pulldown and immunoblotting assays, we show that α-dystrobrevin (α-dbn), an intracellular component of the dystrophin glycoprotein complex, directly and robustly promotes the stability of αkap in a concentration-dependent manner. Mechanistically, we found that the phosphorylatable tyrosine residues of α-dbn are essential for the stability of α-dbn itself and its interaction with αkap, with substitution of three tyrosine residues in the α-dbn C terminus with phenylalanine compromising the αkap–α-dbn interaction and significantly reducing both αkap and α-dbn accumulation. Moreover, the αkap–α-dbn interaction was critical for αkap accumulation and stability. We also found that the absence of either αkap or α-dbn markedly reduces AChRα accumulation and that overexpression of α-dbn or αkap in cultured muscle cells promotes the formation of large agrin-induced AChR clusters. Collectively, these results indicate that the stability of αkap and α-dbn complex plays an important role in the maintenance of high-level expression of AChRs.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 157-157
Author(s):  
Zhou Zhou ◽  
Francisca C. Gushiken ◽  
Angela Bergeron ◽  
Vinod K. Vijayan ◽  
Rolando Rumbaut ◽  
...  

Abstract Abstract 157 Signal Transducer and Activator of Transcription 3 (STAT3) serves as a transcription factor activated by cytokine-induced intracellular signals, which are critical in megakaryopoiesis. This signaling pathway may also be active in anucleated platelets that are primed by proinflammatory cytokines, suggesting that STAT3 plays a role in platelet hyperactivity associated with inflammation. We have recently found that three different classes of STAT3 inhibitors each selectively inhibited collagen-induced aggregation of human platelets by ∼50%. They also blocked thrombus formation (∼80%) on immobilized collagen under an arterial shear stress of 62.5 dyn/cm2. These STAT3 inhibitors also blocked platelet aggregation induced by collagen-related peptide, suggesting that they acted on GP VI-mediated intracellular signaling in platelets. These in vitro results were further verified in two sets of experiments in mouse models. First, an oligonucleotide G-quartet STAT3 inhibitor (1 mg/ml) or a scrambled control oligonucleotide were infused into C57/BJ6 mice daily for three days. Collagen-induced platelet aggregation was then induced and found to be reduced by up to 60% in mice infused with the STAT3 inhibitor, but not with the control oligonucleotide. Photochemical injury-induced thrombosis in the cremaster arterioles was also significantly delayed in the inhibitor-infused mice as compared to control mice. Second, infusing STAT3 inhibitor could result in platelet inhibitor indirectly by acting endothelial cells. To address this concern, we have generated platelet-specific STAT3 null mice that have developed normally and have normal platelet counts. The collagen-, but not TRAP-induced platelet aggregation in the platelet STAT3 KO mice was reduced as compared to their littermates. Platelets from the platelet-specific STAT3 KO mice were also significantly defective in thrombus formation on immobilized collagen under 62.5 dyn/cm2 of fluid shear stress that was generated in a parallel-plate flow chamber system. Consistent with results from these functional assays, collagen induced rapid (peaked at 5 min after stimulation) and dose-dependent tyrosine phosphorylation of STAT3, but not of STAT1 or STAT5 in washed human platelets. The phosphorylation was blocked dose-dependently by two STAT3 inhibitors. Syk inhibitors also blocked collagen-induced STAT3 phosphorylation in a dose-dependent manner, but STAT3 inhibitors had no effect on Syk phosphorylation, suggesting that Syk acts upstream of STAT3. Furthermore, STAT3 inhibitors also dose-dependently reduced collagen-induced tyrosine phosphorylation of PLCγ2, which is a known substrate of Syk. Consistent with this temporal interaction among STAT3, Syk and PLCγ2, activated STAT3 co-immunoprecipitated phosphorylated Syk and PLCγ2 in collagen-activated human platelets. The tri-molecular complex was also immunoprecipitated by an antibody to PLCγ2. Taken together, these data suggest that STAT3 regulates collagen-induced platelet aggregation, independent of its transcription factor activity. The regulation is potentially achieved by STAT3 serving as a protein scaffold linking the kinase Syk with its substrate PLCγ2 to enhance the signal relay in collagen-activated platelets. This cross-talk between collagen and cytokine signaling pathways provides a mechanism for how proinflammatory mediators could prime platelets for activation by hemostatic ligands. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document