scholarly journals Stage- and ribosome-specific alterations in nascent chain-Sec61p interactions accompany translocation across the ER membrane.

1995 ◽  
Vol 129 (4) ◽  
pp. 957-970 ◽  
Author(s):  
C V Nicchitta ◽  
E C Murphy ◽  
R Haynes ◽  
G S Shelness

Near-neighbor interactions between translocating nascent chains and Sec61p were investigated by chemical cross-linking. At stages of translocation before signal sequence cleavage, nascent chains could be cross-linked to Sec61p at high (60-80%) efficiencies. Cross-linking occurred through the signal sequence and the mature portion of wild-type and signal cleavage mutant nascent chains. At later stages of translocation, as represented through truncated translocation intermediates, cross-linking to Sec61p was markedly reduced. Dissociation of the ribosome into its large and small subunits after assembly of the precursor into the translocon, but before cross-linking, resulted in a dramatic reduction in subsequent cross-linking yield, indicating that at early stages of translocation, nascent chain-Sec61p interactions are in part mediated through interactions of the ribosome with components of the ER membrane, such as Sec61p. Dissociation of the ribosome was, however, without effect on subsequent translocation. These results are discussed with respect to a model in which Sec61p performs a function essential for the initiation of protein translocation.

1987 ◽  
Vol 104 (2) ◽  
pp. 201-208 ◽  
Author(s):  
M Wiedmann ◽  
T V Kurzchalia ◽  
H Bielka ◽  
T A Rapoport

We have studied the interaction between the signal sequence of nascent preprolactin and the signal recognition particle (SRP) during the initial events in protein translocation across the endoplasmic reticulum membrane. A new method of affinity labeling was used, whereby lysine residues, carrying the photoreactive group 4-(3-trifluoromethyldiazirino) benzoic acid in their side chains, are incorporated into a protein by means of modified lysyl-tRNA, and cross-linking to the interacting component is induced by irradiation. SRP interacts through its Mr 54,000 polypeptide component with the signal sequences of nascent preprolactin chains containing about 70 residues, and with decreasing affinity with longer chains as well; it causes inhibition of elongation. Binding of SRP is reversible and requires the nascent chain to be bound to a functional ribosome. SRP cross-linked to the signal sequence still inhibits elongation but does not prevent it completely. We conclude that SRP does not block the exit site of the polypeptide chain on the ribosome. The SRP receptor of the endoplasmic reticulum membrane displaces the signal sequence from SRP and, even if SRP is cross-linked, releases elongation arrest.


1990 ◽  
Vol 111 (6) ◽  
pp. 2283-2294 ◽  
Author(s):  
D Görlich ◽  
S Prehn ◽  
E Hartmann ◽  
J Herz ◽  
A Otto ◽  
...  

Bifunctional cross-linking reagents were used to probe the protein environment in the ER membrane of the signal sequence receptor (SSR), a 24-kD integral membrane glycoprotein (Wiedmann, M., T. V. Kurzchalia, E. Hartmann, and T. A. Rapoport. 1987. Nature [Lond.]. 328:830-833). The proximity of several polypeptides was demonstrated. A 22-kD glycoprotein was identified tightly bound to the 34-kD SSR even after membrane solubilization. The 34-kD polypeptide, now termed alpha SSR, and the 22-kD polypeptide, the beta SSR, represent a heterodimer. We report on the sequence of the beta SSR, its membrane topology, and on the mechanism of its integration into the membrane. Cross-linking also produced dimers of the alpha-subunit of the SSR indicating that oligomers of the SSR exist in the ER membrane. Various bifunctional cross-linking reagents were used to study the relation to ER membrane proteins of nascent chains of preprolactin and beta-lactamase at different stages of their translocation through the membrane. The predominant cross-linked products obtained in high yields contained the alpha SSR, indicating in conjunction with previous results that it is a major membrane protein in the neighborhood of translocating nascent chains of secretory proteins. The results support the existence of a translocon, a translocation complex involving the SSR, which constitutes the specific site of protein translocation across the ER membrane.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Thomas R Noriega ◽  
Jin Chen ◽  
Peter Walter ◽  
Joseph D Puglisi

The signal recognition particle (SRP) directs translating ribosome-nascent chain complexes (RNCs) that display a signal sequence to protein translocation channels in target membranes. All previous work on the initial step of the targeting reaction, when SRP binds to RNCs, used stalled and non-translating RNCs. This meant that an important dimension of the co-translational process remained unstudied. We apply single-molecule fluorescence measurements to observe directly and in real-time E. coli SRP binding to actively translating RNCs. We show at physiologically relevant SRP concentrations that SRP-RNC association and dissociation rates depend on nascent chain length and the exposure of a functional signal sequence outside the ribosome. Our results resolve a long-standing question: how can a limited, sub-stoichiometric pool of cellular SRP effectively distinguish RNCs displaying a signal sequence from those that are not? The answer is strikingly simple: as originally proposed, SRP only stably engages translating RNCs exposing a functional signal sequence.


1998 ◽  
Vol 9 (12) ◽  
pp. 3533-3545 ◽  
Author(s):  
Amie J. McClellan ◽  
James B. Endres ◽  
Joseph P. Vogel ◽  
Debra Palazzi ◽  
Mark D. Rose ◽  
...  

The posttranslational translocation of proteins across the endoplasmic reticulum (ER) membrane in yeast requires ATP hydrolysis and the action of hsc70s (DnaK homologues) and DnaJ homologues in both the cytosol and ER lumen. Although the cytosolic hsc70 (Ssa1p) and the ER lumenal hsc70 (BiP) are homologous, they cannot substitute for one another, possibly because they interact with specific DnaJ homologues on each side of the ER membrane. To investigate this possibility, we purified Ssa1p, BiP, Ydj1p (a cytosolic DnaJ homologue), and a GST–63Jp fusion protein containing the lumenal DnaJ region of Sec63p. We observed that BiP, but not Ssa1p, is able to associate with GST–63Jp and that Ydj1p stimulates the ATPase activity of Ssa1p up to 10-fold but increases the ATPase activity of BiP by <2-fold. In addition, Ydj1p and ATP trigger the release of an unfolded polypeptide from Ssa1p but not from BiP. To understand further how BiP drives protein translocation, we purified four dominant lethal mutants of BiP. We discovered that each mutant is defective for ATP hydrolysis, fails to undergo an ATP-dependent conformational change, and cannot interact with GST–63Jp. Measurements of protein translocation into reconstituted proteoliposomes indicate that the mutants inhibit translocation even in the presence of wild-type BiP. We conclude that a conformation- and ATP-dependent interaction of BiP with the J domain of Sec63p is essential for protein translocation and that the specificity of hsc70 action is dictated by their DnaJ partners.


1989 ◽  
Vol 109 (5) ◽  
pp. 2033-2043 ◽  
Author(s):  
U C Krieg ◽  
A E Johnson ◽  
P Walter

The molecular environment of secretory proteins during translocation across the ER membrane was examined by photocross-linking. Nascent preprolactin chains of various lengths, synthesized by in vitro translation of truncated messenger RNAs in the presence of N epsilon-(5-azido-2-nitrobenzoyl)-Lys-tRNA, signal recognition particle, and microsomal membranes, were used to position photoreactive probes at various locations within the membrane. Upon photolysis, each nascent chain species was cross-linked to an integral membrane glycoprotein with a deduced mass of 39 kD (mp39) via photoreactive lysines located in either the signal sequence or the mature prolactin sequence. Thus, different portions of the nascent preprolactin chain are in close proximity to the same membrane protein during the course of translocation, and mp39 therefore appears to be part of the translocon, the specific site of protein translocation across the ER membrane. The similarity of the molecular and cross-linking properties of mp39 and the glyco-protein previously identified as a signal sequence receptor (Wiedmann, M., T. V. Kurzchalia, E. Hartmann, and T. A. Rapoport. 1987. Nature [Lond.]. 328: 830-833) suggests that these two proteins may be identical. Our data indicate, however, that mp39 does not (or not only) function as a signal sequence receptor, but rather may be part of a putative translocation tunnel.


1991 ◽  
Vol 112 (5) ◽  
pp. 809-821 ◽  
Author(s):  
R N Thrift ◽  
D W Andrews ◽  
P Walter ◽  
A E Johnson

The immediate environment of nascent membrane proteins undergoing integration into the ER membrane was investigated by photocrosslinking. Nascent polypeptides of different lengths, each containing a single IgM transmembrane sequence that functions either as a stop-transfer or a signal-anchor sequence, were synthesized by in vitro translation of truncated mRNAs in the presence of N epsilon-(5-azido-2-nitrobenzoyl)-Lys-tRNA, signal recognition particle, and microsomal membranes. This yielded nascent chains with photoreactive probes at one end of the transmembrane sequence where two lysine residues are located. When irradiated, these nascent chains reacted covalently with several ER proteins. One prominent crosslinking target was a glycoprotein similar in size to a protein termed mp39, shown previously to be situated adjacent to a secretory protein during its translocation across the ER membrane (Krieg, U. C., A. E. Johnson, and P. Walter. 1989. J. Cell Biol. 109:2033-2043; Wiedmann, M., D. Goerlich, E. Hartmann, T. V. Kurzchalia, and T. A. Rapoport. 1989. FEBS (Fed. Eur. Biochem. Soc.) Lett. 257:263-268) and likely to be identical to a protein previously designated the signal sequence receptor (Wiedmann, M., T. V. Kurzchalia, E. Hartmann, and T. A. Rapoport. 1987. Nature (Lond.). 328:830-833). Changing the orientation of the transmembrane domain in the bilayer, or making the transmembrane domain the first topogenic sequence in the nascent chain instead of the second, did not significantly alter the identities of the ER proteins that were the primary crosslinking targets. Furthermore, the nascent chains crosslinked to the mp39-like glycoprotein and other microsomal proteins even after the cytoplasmic tail of the nascent chain had been lengthened by nearly 100 amino acids beyond the stop-transfer sequence. Yet when the nascent chain was allowed to terminate normally, the major photocrosslinks were no longer observed, including in particular that to the mp39-like glycoprotein. These results show that the transmembrane segment of a nascent membrane protein is located adjacent to the mp39-like glycoprotein and other ER proteins during the integration process, and that at least a portion of the nascent chain remains in close proximity to these ER proteins until translation has been completed.


1994 ◽  
Vol 125 (4) ◽  
pp. 803-815 ◽  
Author(s):  
W R Skach ◽  
L B Shi ◽  
M C Calayag ◽  
A Frigeri ◽  
V R Lingappa ◽  
...  

CHIP28 is a 28-kD hydrophobic integral membrane protein that functions as a water channel in erythrocytes and renal tubule epithelial cell membranes. We examined the transmembrane topology of CHIP28 in the ER by engineering a reporter of translocation (derived from bovine prolactin) into nine sequential sites in the CHIP28 coding region. The resulting chimeras were expressed in Xenopus oocytes, and the topology of the reporter with respect to the ER membrane was determined by protease sensitivity. We found that although hydropathy analysis predicted up to seven potential transmembrane regions, CHIP28 spanned the membrane only four times. Two putative transmembrane helices, residues 52-68 and 143-157, reside on the lumenal and cytosolic surfaces of the ER membrane, respectively. Topology derived from these chimeric proteins was supported by cell-free translation of five truncated CHIP28 cDNAs, by N-linked glycosylation at an engineered consensus site in native CHIP28 (residue His69), and by epitope tagging of the CHIP28 amino terminus. Defined protein chimeras were used to identify internal sequences that direct events of CHIP28 topogenesis. A signal sequence located within the first 52 residues initiated nascent chain translocation into the ER lumen. A stop transfer sequence located in the hydrophobic region from residues 90-120 terminated ongoing translocation. A second internal signal sequence, residues 155-186, reinitiated translocation of a COOH-terminal domain (residues 186-210) into the ER lumen. Integration of the nascent chain into the ER membrane occurred after synthesis of 107 residues and required the presence of two membrane-spanning regions. From this data, we propose a structural model for CHIP28 at the ER membrane in which four membrane-spanning alpha-helices form a central aqueous channel through the lipid bilayer and create a pathway for water transport.


1996 ◽  
Vol 134 (1) ◽  
pp. 25-35 ◽  
Author(s):  
S Voigt ◽  
B Jungnickel ◽  
E Hartmann ◽  
T A Rapoport

Cotranslational translocation of proteins across the mammalian ER membrane involves, in addition to the signal recognition particle receptor and the Sec61p complex, the translocating chain-associating membrane (TRAM) protein, the function of which is still poorly understood. Using reconstituted proteoliposomes, we show here that the translocation of most, but not all, secretory proteins requires the function of TRAM. Experiments with hybrid proteins demonstrate that the structure of the signal sequence determines whether or not TRAM is needed. Features that distinguish TRAM-dependent and -independent signal sequences include the length of their charged, NH2-terminal region and the structure of their hydrophobic core. In cases where TRAM is required for translocation, it is not needed for the initial interaction of the ribosome/nascent chain complex with the ER membrane but for a subsequent step inside the membrane in which the nascent chain is inserted into the translocation site in a protease-resistant manner. Thus, TRAM functions in a signal sequence-dependent manner at a critical, early phase of the translocation process.


1992 ◽  
Vol 117 (1) ◽  
pp. 15-25 ◽  
Author(s):  
G Migliaccio ◽  
CV Nicchitta ◽  
G Blobel

Detergent extracts of canine pancreas rough microsomal membranes were depleted of either the signal recognition particle receptor (SR), which mediates the signal recognition particle (SRP)-dependent targeting of the ribosome/nascent chain complex to the membrane, or the signal sequence receptor (SSR), which has been proposed to function as a membrane bound receptor for the newly targeted nascent chain and/or as a component of a multi-protein translocation complex responsible for transfer of the nascent chain across the membrane. Depletion of the two components was performed by chromatography of detergent extracts on immunoaffinity supports. Detergent extracts lacking either SR or SSR were reconstituted and assayed for activity with respect to SR dependent elongation arrest release, nascent chain targeting, ribosome binding, secretory precursor translocation, and membrane protein integration. Depletion of SR resulted in the loss of elongation arrest release activity, nascent chain targeting, secretory protein translocation, and membrane protein integration, although ribosome binding was unaffected. Full activity was restored by addition of immunoaffinity purified SR before reconstitution of the detergent extract. Surprisingly, depletion of SSR was without effect on any of the assayed activities, indicating that SSR is either not required for translocation or is one of a family of functionally redundant components.


2003 ◽  
Vol 163 (1) ◽  
pp. 35-44 ◽  
Author(s):  
Gottfried Eisner ◽  
Hans-Georg Koch ◽  
Konstanze Beck ◽  
Joseph Brunner ◽  
Matthias Müller

We have systematically analyzed the molecular environment of the signal sequence of a growing secretory protein from Escherichia coli using a stage- and site-specific cross-linking approach. Immediately after emerging from the ribosome, the signal sequence of pOmpA is accessible to Ffh, the protein component of the bacterial signal recognition particle, and to SecA, but it remains attached to the surface of the ribosome via protein L23. These contacts are lost upon further growth of the nascent chain, which brings the signal sequence into sole proximity to the chaperone Trigger factor (TF). In its absence, nascent pOmpA shows extended contacts with L23, and even long chains interact in these conditions proficiently with Ffh. Our results suggest that upon emergence from the ribosome, the signal sequence of an E. coli secretory protein gradually becomes sequestered by TF. Although TF thereby might control the accessibility of pOmpA's signal sequence to Ffh and SecA, it does not influence interaction of pOmpA with SecB.


Sign in / Sign up

Export Citation Format

Share Document