scholarly journals A New Function for the LDL Receptor: Transcytosis of LDL across the Blood–Brain Barrier

1997 ◽  
Vol 138 (4) ◽  
pp. 877-889 ◽  
Author(s):  
Bénédicte Dehouck ◽  
Laurence Fenart ◽  
Marie-Pierre Dehouck ◽  
Annick Pierce ◽  
Gérard Torpier ◽  
...  

Lipoprotein transport across the blood–brain barrier (BBB) is of critical importance for the delivery of essential lipids to the brain cells. The occurrence of a low density lipoprotein (LDL) receptor on the BBB has recently been demonstrated. To examine further the function of this receptor, we have shown using an in vitro model of the BBB, that in contrast to acetylated LDL, which does not cross the BBB, LDL is specifically transcytosed across the monolayer. The C7 monoclonal antibody, known to interact with the LDL receptor-binding domain, totally blocked the transcytosis of LDL, suggesting that the transcytosis is mediated by the receptor. Furthermore, we have shown that cholesterol-depleted astrocytes upregulate the expression of the LDL receptor at the BBB. Under these conditions, we observed that the LDL transcytosis parallels the increase in the LDL receptor, indicating once more that the LDL is transcytosed by a receptor-mediated mechanism. The nondegradation of the LDL during the transcytosis indicates that the transcytotic pathway in brain capillary endothelial cells is different from the LDL receptor classical pathway. The switch between a recycling receptor to a transcytotic receptor cannot be explained by a modification of the internalization signals of the cytoplasmic domain of the receptor, since we have shown that LDL receptor messengers in growing brain capillary ECs (recycling LDL receptor) or differentiated cells (transcytotic receptor) are 100% identical, but we cannot exclude posttranslational modifications of the cytoplasmic domain, as demonstrated for the polymeric immunoglobulin receptor. Preliminary studies suggest that caveolae are likely to be involved in the potential transport of LDL from the blood to the brain.

Author(s):  
Xiaohe Tian ◽  
Diana Moreira Leite ◽  
Edoardo Scarpa ◽  
Sophie Nyberg ◽  
Gavin Fullstone ◽  
...  

The blood-brain barrier is made of polarised brain endothelial cells (BECs) phenotypically conditioned by the central nervous system (CNS). Transport across BECs is of paramount importance for nutrient uptake as well as to rid the brain of waste products. Nevertheless, currently we do not understand how large macromolecular cargo shuttles across and how BECs discriminate between the brain-bound and own nutrients. Here, we study the low-density lipoprotein receptor-related protein 1 (LRP1) an essential regulator of BEC transport, and show that it is associated with endocytic effectors, endo-lysosomal compartments as well as syndapin-2, a member of the Bin/Amphiphysin/Rvs (BAR) domain superfamily known to stabilise tubular carriers. We employed synthetic self-assembled vesicles, polymersomes, as a multivalent system with tunable avidity as a tool to investigate the mechanism of transport across BECs. We used a combination of conventional and super-resolution microscopy, both in vivo and in vitro, accompanied with biophysical modelling of transport kinetics and membrane-bound interactions. Our results demonstrate that the avidity of the ligand-receptor interaction (the overall cargo binding energy) determines the mechanism of sorting during the early stages of endocytosis and consequent trafficking. We show that high avidity cargo biases the LRP1 towards internalisation and fast degradation in BECs, while mid avidity augments the formation of syndapin-2 stabilised tubular carriers and promotes fast shuttling across BECs. Thus, we map out a very detailed mechanism where clathrin, actin, syndapin-2, dynamin and SNARE act synergistically to enable fast shuttling across BECs.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 892
Author(s):  
Elisa L. J. Moya ◽  
Elodie Vandenhaute ◽  
Eleonora Rizzi ◽  
Marie-Christine Boucau ◽  
Johan Hachani ◽  
...  

Central nervous system (CNS) diseases are one of the top causes of death worldwide. As there is a difficulty of drug penetration into the brain due to the blood–brain barrier (BBB), many CNS drugs treatments fail in clinical trials. Hence, there is a need to develop effective CNS drugs following strategies for delivery to the brain by better selecting them as early as possible during the drug discovery process. The use of in vitro BBB models has proved useful to evaluate the impact of drugs/compounds toxicity, BBB permeation rates and molecular transport mechanisms within the brain cells in academic research and early-stage drug discovery. However, these studies that require biological material (animal brain or human cells) are time-consuming and involve costly amounts of materials and plastic wastes due to the format of the models. Hence, to adapt to the high yields needed in early-stage drug discoveries for compound screenings, a patented well-established human in vitro BBB model was miniaturized and automated into a 96-well format. This replicate met all the BBB model reliability criteria to get predictive results, allowing a significant reduction in biological materials, waste and a higher screening capacity for being extensively used during early-stage drug discovery studies.


mBio ◽  
2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Felipe H. Santiago-Tirado ◽  
Michael D. Onken ◽  
John A. Cooper ◽  
Robyn S. Klein ◽  
Tamara L. Doering

ABSTRACT The blood-brain barrier (BBB) protects the central nervous system (CNS) by restricting the passage of molecules and microorganisms. Despite this barrier, however, the fungal pathogen Cryptococcus neoformans invades the brain, causing a meningoencephalitis that is estimated to kill over 600,000 people annually. Cryptococcal infection begins in the lung, and experimental evidence suggests that host phagocytes play a role in subsequent dissemination, although this role remains ill defined. Additionally, the disparate experimental approaches that have been used to probe various potential routes of BBB transit make it impossible to assess their relative contributions, confounding any integrated understanding of cryptococcal brain entry. Here we used an in vitro model BBB to show that a “Trojan horse” mechanism contributes significantly to fungal barrier crossing and that host factors regulate this process independently of free fungal transit. We also, for the first time, directly imaged C. neoformans-containing phagocytes crossing the BBB, showing that they do so via transendothelial pores. Finally, we found that Trojan horse crossing enables CNS entry of fungal mutants that cannot otherwise traverse the BBB, and we demonstrate additional intercellular interactions that may contribute to brain entry. Our work elucidates the mechanism of cryptococcal brain invasion and offers approaches to study other neuropathogens. IMPORTANCE The fungal pathogen Cryptococcus neoformans invades the brain, causing a meningoencephalitis that kills hundreds of thousands of people each year. One route that has been proposed for this brain entry is a Trojan horse mechanism, whereby the fungus crosses the blood-brain barrier (BBB) as a passenger inside host phagocytes. Although indirect experimental evidence supports this intriguing mechanism, it has never been directly visualized. Here we directly image Trojan horse transit and show that it is regulated independently of free fungal entry, contributes to cryptococcal BBB crossing, and allows mutant fungi that cannot enter alone to invade the brain. IMPORTANCE The fungal pathogen Cryptococcus neoformans invades the brain, causing a meningoencephalitis that kills hundreds of thousands of people each year. One route that has been proposed for this brain entry is a Trojan horse mechanism, whereby the fungus crosses the blood-brain barrier (BBB) as a passenger inside host phagocytes. Although indirect experimental evidence supports this intriguing mechanism, it has never been directly visualized. Here we directly image Trojan horse transit and show that it is regulated independently of free fungal entry, contributes to cryptococcal BBB crossing, and allows mutant fungi that cannot enter alone to invade the brain.


Physiology ◽  
1998 ◽  
Vol 13 (6) ◽  
pp. 287-293 ◽  
Author(s):  
Gerald A. Grant ◽  
N. Joan Abbott ◽  
Damir Janigro

Endothelial cells exposed to inductive central nervous system factors differentiate into a blood-brain barrier phenotype. The blood-brain barrier frequently obstructs the passage of chemotherapeutics into the brain. Tissue culture systems have been developed to reproduce key properties of the intact blood-brain barrier and to allow for testing of mechanisms of transendothelial drug permeation.


2016 ◽  
Vol 36 (5) ◽  
pp. 862-890 ◽  
Author(s):  
Hans C Helms ◽  
N Joan Abbott ◽  
Malgorzata Burek ◽  
Romeo Cecchelli ◽  
Pierre-Olivier Couraud ◽  
...  

The endothelial cells lining the brain capillaries separate the blood from the brain parenchyma. The endothelial monolayer of the brain capillaries serves both as a crucial interface for exchange of nutrients, gases, and metabolites between blood and brain, and as a barrier for neurotoxic components of plasma and xenobiotics. This “blood-brain barrier” function is a major hindrance for drug uptake into the brain parenchyma. Cell culture models, based on either primary cells or immortalized brain endothelial cell lines, have been developed, in order to facilitate in vitro studies of drug transport to the brain and studies of endothelial cell biology and pathophysiology. In this review, we aim to give an overview of established in vitro blood–brain barrier models with a focus on their validation regarding a set of well-established blood–brain barrier characteristics. As an ideal cell culture model of the blood–brain barrier is yet to be developed, we also aim to give an overview of the advantages and drawbacks of the different models described.


Author(s):  
Lorena Gárate-Vélez ◽  
Claudia Escudero-Lourdes ◽  
Daniela Salado-Leza ◽  
Armando González-Sánchez ◽  
Ildemar Alvarado-Morales ◽  
...  

Background: Iron nanoparticles, mainly in magnetite phase (Fe3O4 NPs), are released to the environment in areas with high traffic density and braking frequency. Fe3O4 NPs were found in postmortem human brains and are assumed to get directly into the brain through the olfactory nerve. However, these pollution-derived NPs may also translocate from the lungs to the bloodstream and then, through the blood-brain barrier (BBB), into the brain inducing oxidative and inflammatory responses that contribute to neurodegeneration. Objective: To describe the interaction and toxicity of pollution-derived Fe3O4 NPs on primary rat brain microvascular endothelial cells (rBMECs), main constituents of in vitro BBB models. Methods: Synthetic bare Fe3O4 NPs that mimic the environmental ones (miFe3O4) were synthesized by co-precipitation and characterized using complementary techniques. The rBMECs were cultured in Transwell® plates. The NPs-cell interaction was evaluated through transmission electron microscopy and standard colorimetric in vitro assays. Results: The miFe3O4 NPs, with a mean diameter of 8.45 ± 0.14 nm, presented both magnetite and maghemite phases, and showed super-paramagnetic properties. Results suggest that miFe3O4 NPs are internalized by rBMECs through endocytosis and that they are able to cross the cells monolayer. The lowest miFe3O4 NPs concentration tested induced mid cytotoxicity in terms of 1) membrane integrity (LDH release) and 2) metabolic activity (MTS transformation). Conclusion: Pollution-derived Fe3O4 NPs may interact and cross the microvascular endothelial cells forming the BBB and cause biological damage.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 399 ◽  
Author(s):  
Catarina Chaves ◽  
Xavier Declèves ◽  
Meryam Taghi ◽  
Marie-Claude Menet ◽  
Joelle Lacombe ◽  
...  

The blood–brain barrier (BBB) hinders the brain delivery of many anticancer drugs. In pediatric patients, diffuse intrinsic pontine glioma (DIPG) represents the main cause of brain cancer mortality lacking effective drug therapy. Using sham and DIPG-bearing rats, we analyzed (1) the brain distribution of 3-kDa-Texas red-dextran (TRD) or [14C]-sucrose as measures of BBB integrity, and (2) the role of major ATP-binding cassette (ABC) transporters at the BBB on the efflux of the irinotecan metabolite [3H]-SN-38. The unaffected [14C]-sucrose or TRD distribution in the cerebrum, cerebellum, and brainstem regions in DIPG-bearing animals suggests an intact BBB. Targeted proteomics retrieved no change in P-glycoprotein (P-gp), BCRP, MRP1, and MRP4 levels in the analyzed regions of DIPG rats. In vitro, DIPG cells express BCRP but not P-gp, MRP1, or MRP4. Dual inhibition of P-gp/Bcrp, or Mrp showed a significant increase on SN-38 BBB transport: Cerebrum (8.3-fold and 3-fold, respectively), cerebellum (4.2-fold and 2.8-fold), and brainstem (2.6-fold and 2.2-fold). Elacridar increased [3H]-SN-38 brain delivery beyond a P-gp/Bcrp inhibitor effect alone, emphasizing the role of another unidentified transporter in BBB efflux of SN-38. These results confirm a well-preserved BBB in DIPG-bearing rats, along with functional ABC-transporter expression. The development of chemotherapeutic strategies to circumvent ABC-mediated BBB efflux are needed to improve anticancer drug delivery against DIPG.


2020 ◽  
Vol 9 (10) ◽  
pp. 3236
Author(s):  
Luke Wainwright ◽  
Iain P. Hargreaves ◽  
Ana R. Georgian ◽  
Charles Turner ◽  
R. Neil Dalton ◽  
...  

Primary coenzyme Q10 (CoQ10) deficiency is unique among mitochondrial respiratory chain disorders in that it is potentially treatable if high-dose CoQ10 supplements are given in the early stages of the disease. While supplements improve peripheral abnormalities, neurological symptoms are only partially or temporarily ameliorated. The reasons for this refractory response to CoQ10 supplementation are unclear, however, a contributory factor may be the poor transfer of CoQ10 across the blood–brain barrier (BBB). The aim of this study was to investigate mechanisms of CoQ10 transport across the BBB, using normal and pathophysiological (CoQ10 deficient) cell culture models. The study identifies lipoprotein-associated CoQ10 transcytosis in both directions across the in vitro BBB. Uptake via SR-B1 (Scavenger Receptor) and RAGE (Receptor for Advanced Glycation Endproducts), is matched by efflux via LDLR (Low Density Lipoprotein Receptor) transporters, resulting in no “net” transport across the BBB. In the CoQ10 deficient model, BBB tight junctions were disrupted and CoQ10 “net” transport to the brain side increased. The addition of anti-oxidants did not improve CoQ10 uptake to the brain side. This study is the first to generate in vitro BBB endothelial cell models of CoQ10 deficiency, and the first to identify lipoprotein-associated uptake and efflux mechanisms regulating CoQ10 distribution across the BBB. The results imply that the uptake of exogenous CoQ10 into the brain might be improved by the administration of LDLR inhibitors, or by interventions to stimulate luminal activity of SR-B1 transporters.


2018 ◽  
Vol 132 (3) ◽  
pp. 361-374 ◽  
Author(s):  
Patrizia Giannoni ◽  
Jerome Badaut ◽  
Cyril Dargazanli ◽  
Alexis Fayd’Herbe De Maudave ◽  
Wendy Klement ◽  
...  

The cerebrovasculature is a multicellular structure with varying rheological and permeability properties. The outer wall of the brain capillary endothelium is enclosed by pericytes and astrocyte end feet, anatomically assembled to guarantee barrier functions. We, here, focus on the pericyte modifications occurring in disease conditions, reviewing evidence supporting the interplay amongst pericytes, the endothelium, and glial cells in health and pathology. Deconstruction and reactivity of pericytes and glial cells around the capillary endothelium occur in response to traumatic brain injury, epilepsy, and neurodegenerative disorders, impacting vascular permeability and participating in neuroinflammation. As this represents a growing field of research, addressing the multicellular reorganization occurring at the outer wall of the blood-brain barrier (BBB) in response to an acute insult or a chronic disease could disclose novel disease mechanisms and therapeutic targets.


Sign in / Sign up

Export Citation Format

Share Document