scholarly journals CENP-E Function at Kinetochores Is Essential for Chromosome Alignment

1997 ◽  
Vol 139 (6) ◽  
pp. 1373-1382 ◽  
Author(s):  
B.T. Schaar ◽  
G.K.T. Chan ◽  
P. Maddox ◽  
E.D. Salmon ◽  
T.J. Yen

CENP-E is a kinesin-like protein that binds to kinetochores and may provide functions that are critical for normal chromosome motility during mitosis. To directly test the in vivo function of CENP-E, we microinjected affinity-purified antibodies to block the assembly of CENP-E onto kinetochores and then examined the behavior of these chromosomes. Chromosomes lacking CENP-E at their kinetochores consistently exhibited two types of defects that blocked their alignment at the spindle equator. Chromosomes positioned near a pole remained mono-oriented as they were unable to establish bipolar microtubule connections with the opposite pole. Chromosomes within the spindle established bipolar connections that supported oscillations and normal velocities of kinetochore movement between the poles, but these bipolar connections were defective because they failed to align the chromosomes into a metaphase plate. Overexpression of a mutant that lacked the amino-terminal 803 amino acids of CENP-E was found to saturate limiting binding sites on kinetochores and competitively blocked endogenous CENP-E from assembling onto kinetochores. Chromosomes saturated with the truncated CENP-E mutant were never found to be aligned but accumulated at the poles or were strewn within the spindle as was the case when cells were microinjected with CENP-E antibodies. As the motor domain was contained within the portion of CENP-E that was deleted, the chromosomal defect is likely attributed to the loss of motor function. The combined data show that CENP-E provides kinetochore functions that are essential for monopolar chromosomes to establish bipolar connections and for chromosomes with connections to both spindle poles to align at the spindle equator. Both of these events rely on activities that are provided by CENP-E's motor domain.

1987 ◽  
Vol 7 (1) ◽  
pp. 294-304 ◽  
Author(s):  
D Pilgrim ◽  
E T Young

Alcohol dehydrogenase isoenzyme III (ADH III) in Saccharomyces cerevisiae, the product of the ADH3 gene, is located in the mitochondrial matrix. The ADH III protein was synthesized as a larger precursor in vitro when the gene was transcribed with the SP6 promoter and translated with a reticulocyte lysate. A precursor of the same size was detected when radioactively pulse-labeled proteins were immunoprecipitated with anti-ADH antibody. This precursor was rapidly processed to the mature form in vivo with a half-time of less than 3 min. The processing was blocked if the mitochondria were uncoupled with carbonyl cyanide m-chlorophenylhydrazone. Mutant enzymes in which only the amino-terminal 14 or 16 amino acids of the presequence were retained were correctly targeted and imported into the matrix. A mutant enzyme that was missing the amino-terminal 17 amino acids of the presequence produced an active enzyme, but the majority of the enzyme activity remained in the cytoplasmic compartment on cellular fractionation. Random amino acid changes were produced in the wild-type presequence by bisulfite mutagenesis of the ADH3 gene. The resulting ADH III protein was targeted to the mitochondria and imported into the matrix in all of the mutants tested, as judged by enzyme activity. Mutants containing amino acid changes in the carboxyl-proximal half of the ADH3 presequence were imported and processed to the mature form at a slower rate than the wild type, as judged by pulse-chase studies in vivo. The unprocessed precursor appeared to be unstable in vivo. It was concluded that only a small portion of the presequence contains the necessary information for correct targeting and import. Furthermore, the information for correct proteolytic processing of the presequence appears to be distinct from the targeting information and may involve secondary structure information in the presequence.


Development ◽  
1986 ◽  
Vol 95 (1) ◽  
pp. 131-145
Author(s):  
Michelle Webb ◽  
Sarah K. Howlett ◽  
Bernard Maro

The cytoskeletal organization of the mouse egg changes during ageing in vivo and in vitro. The earliest change observed is the disappearance of the microfilament-rich area overlying the meiotic spindle. This is followed by the migration of the spindle towards the centre of the egg. Finally the spindle breaks down and the chromosomes are no longer organized on a metaphase plate. This spindle disruption may result from changes in the microtubule nucleating material found at the spindle poles and from an increase in the critical concentration for tubulin polymerization. It is possible to correlate the changes in the cytoskeletal organization of the egg occurring during ageing with the different types of parthenogenetic embryos obtained after ethanol activation. These observations strengthen the hypothesis that the actin-rich cortical area that overlies the meiotic spindle forms a domain to which the meiotic cleavage furrow is restricted and provides some insights into the mechanisms by which different types of parthenogenetic embryos are generated.


2020 ◽  
Vol 134 (1) ◽  
pp. jcs251025
Author(s):  
Zoë Geraghty ◽  
Christina Barnard ◽  
Pelin Uluocak ◽  
Ulrike Gruneberg

ABSTRACTErrors in mitotic chromosome segregation can lead to DNA damage and aneuploidy, both hallmarks of cancer. To achieve synchronous error-free segregation, mitotic chromosomes must align at the metaphase plate with stable amphitelic attachments to microtubules emanating from opposing spindle poles. The astrin–kinastrin (astrin is also known as SPAG5 and kinastrin as SKAP) complex, also containing DYNLL1 and MYCBP, is a spindle and kinetochore protein complex with important roles in bipolar spindle formation, chromosome alignment and microtubule–kinetochore attachment. However, the molecular mechanisms by which astrin–kinastrin fulfils these diverse roles are not fully understood. Here, we characterise a direct interaction between astrin and the mitotic kinase Plk1. We identify the Plk1-binding site on astrin as well as four Plk1 phosphorylation sites on astrin. Regulation of astrin by Plk1 is dispensable for bipolar spindle formation and bulk chromosome congression, but promotes stable microtubule–kinetochore attachments and metaphase plate maintenance. It is known that Plk1 activity is required for effective microtubule–kinetochore attachment formation, and we suggest that astrin phosphorylation by Plk1 contributes to this process.


1990 ◽  
Vol 111 (5) ◽  
pp. 1971-1985 ◽  
Author(s):  
J M Raats ◽  
F R Pieper ◽  
W T Vree Egberts ◽  
K N Verrijp ◽  
F C Ramaekers ◽  
...  

To study the role of the amino-terminal domain of the desmin subunit in intermediate filament (IF) formation, several deletions in the sequence encoding this domain were made. The deleted hamster desmin genes were fused to the RSV promoter. Expression of such constructs in vimentin-free MCF-7 cells as well as in vimentin-containing HeLa cells, resulted in the synthesis of mutant proteins of the expected size. Single- and double-label immunofluorescence assays of transfected cells showed that in the absence of vimentin, desmin subunits missing amino acids 4-13 are still capable of filament formation, although in addition to filaments large numbers of desmin dots are present. Mutant desmin subunits missing larger portions of their amino terminus cannot form filaments on their own. It may be concluded that the amino-terminal region comprising amino acids 7-17 contains residues indispensable for desmin filament formation in vivo. Furthermore it was shown that the endogenous vimentin IF network in HeLa cells masks the effects of mutant desmin on IF assembly. Intact and mutant desmin colocalized completely with endogenous vimentin in HeLa cells. Surprisingly, in these cells endogenous keratin also seemed to colocalize with endogenous vimentin, even if the endogenous vimentin filaments were disturbed after expression of some of the mutant desmin proteins. In MCF-7 cells some overlap between endogenous keratin and intact exogenous desmin filaments was also observed, but mutant desmin proteins did not affect the keratin IF structures. In the absence of vimentin networks (MCF-7 cells), the initiation of desmin filament formation seems to start on the preexisting keratin filaments. However, in the presence of vimentin (HeLa cells) a gradual integration of desmin in the preexisting vimentin filaments apparently takes place.


1991 ◽  
Vol 11 (6) ◽  
pp. 2994-3000 ◽  
Author(s):  
K M Yao ◽  
K White

Drosophila virilis genomic DNA corresponding to the D. melanogaster embryonic lethal abnormal visual system (elav) locus was cloned. DNA sequence analysis of a 3.8-kb genomic piece allowed identification of (i) an open reading frame (ORF) with striking homology to the previously identified D. melanogaster ORF and (ii) conserved sequence elements of possible regulatory relevance within and flanking the second intron. Conceptual translation of the D. virilis ORF predicts a 519-amino-acid-long ribonucleoprotein consensus sequence-type protein. Similar to D. melanogaster ELAV protein, it contains three tandem RNA-binding domains and an alanine/glutamine-rich amino-terminal region. The sequence throughout the RNA-binding domains, comprising the carboxy-terminal 346 amino acids, shows an extraordinary 100% identity at the amino acid level, indicating a strong structural constraint for this functional domain. The amino-terminal region is 36 amino acids longer in D. virilis, and the conservation is 66%. In in vivo functional tests, the D. virilis ORF was indistinguishable from the D. melanogaster ORF. Furthermore, a D. melanogaster ORF encoding an ELAV protein with a 40-amino-acid deletion within the alanine/glutamine-rich region was also able to supply elav function in vivo. Thus, the divergence of the amino-terminal region of the ELAV protein reflects lowered functional constraint rather than species-specific functional specification.


2000 ◽  
Vol 182 (20) ◽  
pp. 5807-5812 ◽  
Author(s):  
Eun Hee Cho ◽  
Renato Alcaraz ◽  
Richard I. Gumport ◽  
Jeffrey F. Gardner

ABSTRACT The bacteriophage λ excisionase (Xis) is a sequence-specific DNA binding protein required for excisive recombination. Xis binds cooperatively to two DNA sites arranged as direct repeats on the phage DNA. Efficient excision is achieved through a cooperative interaction between Xis and the host-encoded factor for inversion stimulation as well as a cooperative interaction between Xis and integrase. The secondary structure of the Xis protein was predicted to contain a typical amphipathic helix that spans residues 18 to 28. Several mutants, defective in promoting excision in vivo, were isolated with mutations at positions encoding polar amino acids in the putative helix (T. E. Numrych, R. I. Gumport, and J. F. Gardner, EMBO J. 11:3797–3806, 1992). We substituted alanines for the polar amino acids in this region. Mutant proteins with substitutions for polar amino acids in the amino-terminal region of the putative helix exhibited decreased excision in vivo and were defective in DNA binding. In addition, an alanine substitution at glutamic acid 40 also resulted in altered DNA binding. This indicates that the hydrophilic face of the α-helix and the region containing glutamic acid 40 may form the DNA binding surfaces of the Xis protein.


1988 ◽  
Vol 8 (9) ◽  
pp. 3960-3963
Author(s):  
J E Buss ◽  
C J Der ◽  
P A Solski

We have used oligonucleotide-directed mutagenesis to replace the N-terminal amino acids of p21v-ras with residues which mimic the amino terminus of p60v-src. p21v-ras protein possessing only the first five amino acids of p60src was not myristylated, while substitution of residue 6 (serine) produced a protein p21(GSSKS) which incorporated [3H]myristic acid that was stable to hydroxylamine, sensitive to inhibitors of protein synthesis, and found in both the normally nonacylated precursor and mature forms of p21(GSSKS). This defines the minimum framework of the p60v-src myristylation signal (glycine 2 and serine 6) and identifies serine 6 as a crucial part of that signal for myristylation of a protein in vivo.


1991 ◽  
Vol 69 (7) ◽  
pp. 1123-1128 ◽  
Author(s):  
David Lodge ◽  
Martyn G. Jones ◽  
Andrew J. Palmer

Although the N-methyl-D-aspartate (NMDA) subtype of L-glutamate receptor is well characterized, the significance of non-NMDA glutamate-sensitive binding sites is not well documented. In this study, a new tricyclic quinoxalinedione (NBQX) and an arthropod toxin (philanthotoxin) were shown to block responses of spinal neurones in vivo to kainate, quisqualate, and AMPA in parallel but had little effect on responses to NMDA. Philanthotoxin appeared to be a use-dependent antagonist consistent with a channel-blocking mode of action. On cortical wedges in vitro, however, NBQX proved to be a more potent antagonist of AMPA and quisqualate than of kainate (pA2 values of 7.1, 7.0, and 5.6, respectively) with no effect at 10 μM on responses to NMDA. These studies provide evidence that on cortical neurones, but not on spinal neurones, AMPA and kainate depolarize by pharmacologically different mechanisms.Key words: glutamate receptors, quinoxalinediones, philanthotoxin, AMPA, kainate.


Blood ◽  
1995 ◽  
Vol 85 (1) ◽  
pp. 87-95 ◽  
Author(s):  
T Yi ◽  
J Zhang ◽  
O Miura ◽  
JN Ihle

Erythropoietin (Epo) binding to its receptor (EpoR) induces tyrosine phosphorylation in responsive cells and this ability is required for a mitogenic response. One of the substrates of tyrosine phosphorylation is the Epo receptor (EpoR). The carboxyl region of EpoR cytoplasmic domain is required for EpoR phosphorylation and has been shown to negatively affect the response to Epo both in vivo and in cell lines. Hematopoietic cell phosphatase (HCP) has also been hypothesized to negatively regulate erythropoiesis, based on the hypersensitivity to Epo of erythroid lineage cells in moth-eaten mice that genetically lack HCP. In the studies presented here, we show that HCP binds the tyrosine phosphorylated Epo receptor through the amino-terminal src-homology 2 (SH2) domain of HCP. Using a series of phosphotyrosine-containing peptides, potential HCP binding sites in the cytoplasmic domain of the EpoR are identified. The results support the concept that, after Epo stimulation, phosphorylation of EpoR provides a docking site for HCP in the receptor complex. Recruitment of HCP to the complex and its subsequent dephosphorylation of substrates and/or associated kinases may be important to mitigate the ligand-induced mitogenic response.


2002 ◽  
Vol 184 (19) ◽  
pp. 5508-5512 ◽  
Author(s):  
Hema L. Vakharia ◽  
Kathleen Postle

ABSTRACT TonB-gated transporters have β-barrels containing an amino-terminal globular domain that occludes the interior of the barrel. Mutations in the globular domain prevent transport of ligands across the outer membrane. Surprisingly, FepA with deletions of the globular domain (amino acids 3 to 150 and 17 to 150) was previously reported to retain significant sensitivity to colicins B and D and to use ferric enterochelin, all in a TonB-dependent fashion. To further understand TonB interaction with the β-barrel, in the present study, proteins with deletions of amino acids 1 to 152, 7 to 152, 20 to 152, and 17 to 150 in fepA were constructed and expressed in a ΔfepA strain. In contrast to previous studies of fepA globular domain deletions, constructs in this study did not retain sensitivity to colicin B and conferred only marginal sensitivity to colicin D. Consistent with these observations, they failed to bind colicin B and detectably cross-link to TonB in vivo. To address this discrepancy, constructs were tested in other strains, one of which (RWB18-60) did support activity of the FepA globular domain deletion proteins constructed in this study. The characteristics of that strain, as well as the strain in which the ΔFhuA globular domain mutants were seen to be active, suggests the hypothesis that interprotein complementation by two individually nonfunctional proteins restores TonB-dependent activity.


Sign in / Sign up

Export Citation Format

Share Document