scholarly journals Regulation of Actin Filament Cross-linking and Bundle Shape in Drosophila Bristles

2000 ◽  
Vol 148 (1) ◽  
pp. 87-99 ◽  
Author(s):  
Lewis G. Tilney ◽  
Patricia S. Connelly ◽  
Kelly A. Vranich ◽  
Michael K. Shaw ◽  
Gregory M. Guild

Previous studies demonstrate that in developing Drosophila bristles, two cross-linking proteins are required sequentially to bundle the actin filaments that support elongating bristle cells. The forked protein initiates the process and facilitates subsequent cross-linking by fascin. Using cross-linker–specific antibodies, mutants, and drugs we show that fascin and actin are present in excessive amounts throughout bundle elongation. In contrast, the forked cross-linker is limited throughout bundle formation, and accordingly, regulates bundle size and shape. We also show that regulation of cross-linking by phosphorylation can affect bundle size. Specifically, inhibition of phosphorylation by staurosporine results in a failure to form large bundles if added during bundle formation, and leads to a loss of cross-linking by fascin if added after the bundles form. Interestingly, inhibition of dephosphorylation by okadaic acid results in the separation of the actin bundles from the plasma membrane. We further show by thin section electron microscopy analysis of mutant and wild-type bristles that the amount of material that connects the actin bundles to the plasma membrane is also limited throughout bristle elongation. Therefore, overall bundle shape is determined by the number of actin filaments assembled onto the limited area provided by the connector material. We conclude that assembly of actin bundles in Drosophila bristles is controlled in part by the controlled availability of a single cross-linking protein, forked, and in part by controlled phosphorylation of cross-links and membrane actin connector proteins.

1995 ◽  
Vol 130 (3) ◽  
pp. 629-638 ◽  
Author(s):  
L G Tilney ◽  
M S Tilney ◽  
G M Guild

Transverse sections though Drosophila bristles reveal 7-11 nearly round, plasma membrane-associated bundles of actin filaments. These filaments are hexagonally packed and in a longitudinal section they show a 12-nm periodicity in both the 1.1 and 1.0 views. From earlier studies this periodicity is attributable to cross-links and indicates that the filaments are maximally cross-linked, singed mutants also have 7-11 bundles, but the bundles are smaller, flattened, and the filaments within the bundles are randomly packed (not hexagonal); no periodicity can be detected in longitudinal sections. Another mutant, forked (f36a), also has 7-11 bundles but even though the bundles are very small, the filaments within them are hexagonally packed and display a 12-nm periodicity in longitudinal section. The singed-forked double mutant lacks filament bundles. Thus there are at least two species of cross-links between adjacent actin filaments. Hints of why two species of cross-links are necessary can be gleaned by studying bristle formation. Bristles sprout with only microtubules within them. A little later in development actin filaments appear. At early stages the filaments in the bundles are randomly packed. Later the filaments in the bundles become hexagonally packed and maximally cross-linked. We consider that the forked proteins may be necessary early in development to tie the filaments together in a bundle so that they can be subsequently zippered together by fascin (the singed gene product).


2019 ◽  
Vol 30 (7) ◽  
pp. 851-862 ◽  
Author(s):  
Alyssa J. Harker ◽  
Harshwardhan H. Katkar ◽  
Tamara C. Bidone ◽  
Fikret Aydin ◽  
Gregory A. Voth ◽  
...  

Ena/VASP tetramers are processive actin elongation factors that localize to diverse F-actin networks composed of filaments bundled by different cross-linking proteins, such as filopodia (fascin), lamellipodia (fimbrin), and stress fibers (α-actinin). Previously, we found that Ena takes approximately threefold longer processive runs on trailing barbed ends of fascin-bundled F-actin. Here, we used single-molecule TIRFM (total internal reflection fluorescence microscopy) and developed a kinetic model to further dissect Ena/VASP’s processive mechanism on bundled filaments. We discovered that Ena’s enhanced processivity on trailing barbed ends is specific to fascin bundles, with no enhancement on fimbrin or α-actinin bundles. Notably, Ena/VASP’s processive run length increases with the number of both fascin-bundled filaments and Ena “arms,” revealing avidity facilitates enhanced processivity. Consistently, Ena tetramers form more filopodia than mutant dimer and trimers in Drosophila culture cells. Moreover, enhanced processivity on trailing barbed ends of fascin-bundled filaments is an evolutionarily conserved property of Ena/VASP homologues, including human VASP and Caenorhabditis elegans UNC-34. These results demonstrate that Ena tetramers are tailored for enhanced processivity on fascin bundles and that avidity of multiple arms associating with multiple filaments is critical for this process. Furthermore, we discovered a novel regulatory process whereby bundle size and bundling protein specificity control activities of a processive assembly factor.


1994 ◽  
Vol 107 (6) ◽  
pp. 1623-1631 ◽  
Author(s):  
M. Footer ◽  
A. Bretscher

The isolated intestinal microvillus cytoskeleton (core) consists of four major proteins: actin, villin, fimbrin and brush border myosin-I. These proteins can assemble in vitro into structures resembling native microvillus cores. Of these components, villin and brush border myosin-I show tissue-specific expression, so they may be involved in the morphogenesis of intestinal microvilli. When introduced into cultured cells that normally lack the protein, villin induces a reorganization of the actin filaments to generate large surface microvilli. Here we examine the consequences of microinjecting brush border myosin-I either alone or together with villin into cultured fibroblasts. Injection of brush border myosin-I has no discernible effect on the overall morphology of the cells, but does become localized to either normal or villin-induced microvilli and other surface structures containing an actin cytoskeleton. Since some endogenous myosin-Is have been found associated with cytoplasmic vesicles, these results show that brush border myosin-I has a domain that specifically targets it to the plasma membrane in both intestinal and cultured cell systems. Ultrastructural examination of microvilli on control cultured cells revealed that they contain a far more highly ordered bundle of microfilaments than had been previously appreciated. The actin filaments in microvilli of villin-injected cells appeared to be more tightly cross-linked when examined by thin-section electron microscopy. In intestinal microvilli, the core bundle is separated from the plasma membrane by about 30 nm due to the presence of brush border myosin-I.(ABSTRACT TRUNCATED AT 250 WORDS)


1978 ◽  
Vol 175 (3) ◽  
pp. 1023-1032 ◽  
Author(s):  
P Knight ◽  
G Offer

Covalent cross-links can be inserted between the subunits of F-actin by using p-NN′-phenylenebismaleimide. Cross-linking reaches its maximum value when one molecule of reagent has reacted with each actin subunit. p-NN′-Phenylenebismaleimide reacts initially with a cysteine residue on one subunit, the slower cross-linking reaction involving a lysine residue on a neighbouring subunit. Hydrolysis of the actin-bound reagent limits the extent of cross-linking. Quantitative analysis of the amounts of cross-linked oligomers seen on polyacrylamide gels containing sodium dodecyl sulphate suggests that neither the binding of the reagent to actin nor the formation of cross-links introduces strain into the structure. The cross-links do not join together different F-actin filaments, and evidence is presented that suggests that the cross-links join subunits of the same long-pitched helix.


1990 ◽  
Vol 110 (6) ◽  
pp. 2013-2024 ◽  
Author(s):  
R K Meyer ◽  
U Aebi

Cross-linking of actin filaments (F-actin) into bundles and networks was investigated with three different isoforms of the dumbbell-shaped alpha-actinin homodimer under identical reaction conditions. These were isolated from chicken gizzard smooth muscle, Acanthamoeba, and Dictyostelium, respectively. Examination in the electron microscope revealed that each isoform was able to cross-link F-actin into networks. In addition, F-actin bundles were obtained with chicken gizzard and Acanthamoeba alpha-actinin, but not Dictyostelium alpha-actinin under conditions where actin by itself polymerized into disperse filaments. This F-actin bundle formation critically depended on the proper molar ratio of alpha-actinin to actin, and hence F-actin bundles immediately disappeared when free alpha-actinin was withdrawn from the surrounding medium. The apparent dissociation constants (Kds) at half-saturation of the actin binding sites were 0.4 microM at 22 degrees C and 1.2 microM at 37 degrees C for chicken gizzard, and 2.7 microM at 22 degrees C for both Acanthamoeba and Dictyostelium alpha-actinin. Chicken gizzard and Dictyostelium alpha-actinin predominantly cross-linked actin filaments in an antiparallel fashion, whereas Acanthamoeba alpha-actinin cross-linked actin filaments preferentially in a parallel fashion. The average molecular length of free alpha-actinin was 37 nm for glycerol-sprayed/rotary metal-shadowed and 35 nm for negatively stained chicken gizzard; 46 and 44 nm, respectively, for Acanthamoeba; and 34 and 31 nm, respectively, for Dictyostelium alpha-actinin. In negatively stained preparations we also evaluated the average molecular length of alpha-actinin when bound to actin filaments: 36 nm for chicken gizzard and 35 nm for Acanthamoeba alpha-actinin, a molecular length roughly coinciding with the crossover repeat of the two-stranded F-actin helix (i.e., 36 nm), but only 28 nm for Dictyostelium alpha-actinin. Furthermore, the minimal spacing between cross-linking alpha-actinin molecules along actin filaments was close to 36 nm for both smooth muscle and Acanthamoeba alpha-actinin, but only 31 nm for Dictyostelium alpha-actinin. This observation suggests that the molecular length of the alpha-actinin homodimer may determine its spacing along the actin filament, and hence F-actin bundle formation may require "tight" (i.e., one molecule after the other) and "untwisted" (i.e., the long axis of the molecule being parallel to the actin filament axis) packing of alpha-actinin molecules along the actin filaments.


1999 ◽  
Vol 144 (1) ◽  
pp. 83-98 ◽  
Author(s):  
Bruce L. Goode ◽  
Jonathan J. Wong ◽  
Anne-Christine Butty ◽  
Matthias Peter ◽  
Ashley L. McCormack ◽  
...  

Coronin is a highly conserved actin-associated protein that until now has had unknown biochemical activities. Using microtubule affinity chromatography, we coisolated actin and a homologue of coronin, Crn1p, from Saccharomyces cerevisiae cell extracts. Crn1p is an abundant component of the cortical actin cytoskeleton and binds to F-actin with high affinity (Kd 6 × 10−9 M). Crn1p promotes the rapid barbed-end assembly of actin filaments and cross-links filaments into bundles and more complex networks, but does not stabilize them. Genetic analyses with a crn1Δ deletion mutation also are consistent with Crn1p regulating filament assembly rather than stability. Filament cross-linking depends on the coiled coil domain of Crn1p, suggesting a requirement for Crn1p dimerization. Assembly-promoting activity is independent of cross-linking and could be due to nucleation and/or accelerated polymerization. Crn1p also binds to microtubules in vitro, and microtubule binding is enhanced by the presence of actin filaments. Microtubule binding is mediated by a region of Crn1p that contains sequences (not found in other coronins) homologous to the microtubule binding region of MAP1B. These activities, considered with microtubule defects observed in crn1Δ cells and in cells overexpressing Crn1p, suggest that Crn1p may provide a functional link between the actin and microtubule cytoskeletons in yeast.


1998 ◽  
Vol 143 (1) ◽  
pp. 121-133 ◽  
Author(s):  
Lewis G. Tilney ◽  
Patricia S. Connelly ◽  
Kelly A. Vranich ◽  
Michael K. Shaw ◽  
Gregory M. Guild

In developing Drosophila bristles two species of cross-linker, the forked proteins and fascin, connect adjacent actin filaments into bundles. Bundles form in three phases: (a) tiny bundles appear; (b) these bundles aggregate into larger bundles; and (c) the filaments become maximally cross-linked by fascin. In mutants that completely lack forked, aggregation of the bundles does not occur so that the mature bundles consist of <50 filaments versus ∼700 for wild type. If the forked concentration is genetically reduced to half the wild type, aggregation of the tiny bundles occurs but the filaments are poorly ordered albeit with small patches of fascin cross-linked filaments. In mutants containing an excess of forked, all the bundles tend to aggregate and the filaments are maximally crossbridged by fascin. Alternatively, if fascin is absent, phases 1 and 2 occur normally but the resultant bundles are twisted and the filaments within them are poorly ordered. By extracting fully elongated bristles with potassium iodide which removes fascin but leaves forked, the bundles change from being straight to twisted and the filaments within them become poorly ordered. From these observations we conclude that (a) forked is used early in development to aggregate the tiny bundles into larger bundles; and (b) forked facilitates fascin entry into the bundles to maximally cross-link the actin filaments into straight, compact, rigid bundles. Thus, forked aligns the filaments and then directs fascin binding so that inappropriate cross-linking does not occur.


1983 ◽  
Vol 96 (5) ◽  
pp. 1491-1496 ◽  
Author(s):  
J R Glenney ◽  
P Glenney ◽  
K Weber

Previous studies have shown that molecules related to erythrocyte spectrin are present in the cortical cytoplasm of nonerythroid cells. We report here the localization by immunoelectron microscopy of one such molecule, TW-260/240, in the brush border of intestinal epithelial cells. Using highly specific antibodies against TW-260 and TW-240 as well as antibodies against fodrin, another spectrinlike molecule, we have found that the TW-260/240 molecules are displayed between rootlets at all levels of the terminal web. Occasionally, extended structures appear labeled suggestive of the fine filaments known to cross-link actin bundles. These results are in line with previous in vitro studies showing that TW-260/240 binds to, and cross-links, actin filaments. The results are discussed in terms of a model in which rootlets are immobilized in the terminal web in a matrix of TW-260/240.


2017 ◽  
Vol 114 (9) ◽  
pp. 2131-2136 ◽  
Author(s):  
Kimberly L. Weirich ◽  
Shiladitya Banerjee ◽  
Kinjal Dasbiswas ◽  
Thomas A. Witten ◽  
Suriyanarayanan Vaikuntanathan ◽  
...  

The actin cytoskeleton is a critical regulator of cytoplasmic architecture and mechanics, essential in a myriad of physiological processes. Here we demonstrate a liquid phase of actin filaments in the presence of the physiological cross-linker, filamin. Filamin condenses short actin filaments into spindle-shaped droplets, or tactoids, with shape dynamics consistent with a continuum model of anisotropic liquids. We find that cross-linker density controls the droplet shape and deformation timescales, consistent with a variable interfacial tension and viscosity. Near the liquid–solid transition, cross-linked actin bundles show behaviors reminiscent of fluid threads, including capillary instabilities and contraction. These data reveal a liquid droplet phase of actin, demixed from the surrounding solution and dominated by interfacial tension. These results suggest a mechanism to control organization, morphology, and dynamics of the actin cytoskeleton.


2018 ◽  
Vol 115 (44) ◽  
pp. 11162-11167 ◽  
Author(s):  
Bing Yang ◽  
Haifan Wu ◽  
Paul D. Schnier ◽  
Yansheng Liu ◽  
Jun Liu ◽  
...  

Chemical cross-linking mass spectrometry (CXMS) is being increasingly used to study protein assemblies and complex protein interaction networks. Existing CXMS chemical cross-linkers target only Lys, Cys, Glu, and Asp residues, limiting the information measurable. Here we report a “plant-and-cast” cross-linking strategy that employs a heterobifunctional cross-linker that contains a highly reactive succinimide ester as well as a less reactive sulfonyl fluoride. The succinimide ester reacts rapidly with surface Lys residues “planting” the reagent at fixed locations on protein. The pendant aryl sulfonyl fluoride is then “cast” across a limited range of the protein surface, where it can react with multiple weakly nucleophilic amino acid sidechains in a proximity-enhanced sulfur-fluoride exchange (SuFEx) reaction. Using proteins of known structures, we demonstrated that the heterobifunctional agent formed cross-links between Lys residues and His, Ser, Thr, Tyr, and Lys sidechains. This geometric specificity contrasts with current bis-succinimide esters, which often generate nonspecific cross-links between lysines brought into proximity by rare thermal fluctuations. Thus, the current method can provide diverse and robust distance restraints to guide integrative modeling. This work provides a chemical cross-linker targeting unactivated Ser, Thr, His, and Tyr residues using sulfonyl fluorides. In addition, this methodology yielded a variety of cross-links when applied to the complex Escherichia coli cell lysate. Finally, in combination with genetically encoded chemical cross-linking, cross-linking using this reagent markedly increased the identification of weak and transient enzyme–substrate interactions in live cells. Proximity-dependent cross-linking will dramatically expand the scope and power of CXMS for defining the identities and structures of protein complexes.


Sign in / Sign up

Export Citation Format

Share Document