scholarly journals Accumulation of endoplasmic membranes and novel membrane-bound ribosome–signal recognition particle receptor complexes in Escherichia coli

2002 ◽  
Vol 159 (3) ◽  
pp. 403-410 ◽  
Author(s):  
Anat A. Herskovits ◽  
Eyal Shimoni ◽  
Abraham Minsky ◽  
Eitan Bibi

In Escherichia coli, ribosomes must interact with translocons on the membrane for the proper integration of newly synthesized membrane proteins, cotranslationally. Previous in vivo studies indicated that unlike the E. coli signal recognition particle (SRP), the SRP receptor FtsY is required for membrane targeting of ribosomes. Accordingly, a putative SRP-independent, FtsY-mediated ribosomal targeting pathway has been suggested (Herskovits, A.A., E.S. Bochkareva, and E. Bibi. 2000. Mol. Microbiol. 38:927–939). However, the nature of the early contact of ribosomes with the membrane, and the involvement of FtsY in this interaction are unknown. Here we show that in cells depleted of the SRP protein, Ffh or the translocon component SecE, the ribosomal targeting pathway is blocked downstream and unprecedented, membrane-bound FtsY–ribosomal complexes are captured. Concurrently, under these conditions, novel, ribosome-loaded intracellular membrane structures are formed. We propose that in the absence of a functional SRP or translocon, ribosomes remain jammed at their primary membrane docking site, whereas FtsY-dependent ribosomal targeting to the membrane continues. The accumulation of FtsY-ribosome complexes induces the formation of intracellular membranes needed for their quantitative accommodation. Our results with E. coli, in conjunction with recent observations made with the yeast Saccharomyces cerevisiae, raise the possibility that the SRP receptor–mediated formation of intracellular membrane networks is governed by evolutionarily conserved principles.

2003 ◽  
Vol 185 (19) ◽  
pp. 5697-5705 ◽  
Author(s):  
Christina Wilson Bowers ◽  
Fion Lau ◽  
Thomas J. Silhavy

ABSTRACT LamB-LacZ fusion proteins have classically been used in studies of the general secretion pathway of Escherichia coli. Here we describe how increasing signal sequence hydrophobicity routes LamB-LacZ Hyb42-1 to the signal recognition particle (SRP) pathway. Secretion of this hydrophobic fusion variant (H*LamB-LacZ) was reduced in the absence of fully functional Ffh and Ffs, and the translocator jamming caused by Hyb42-1 was prevented by efficient delivery of the fusion to the periplasm. Finally, we found that in the absence of the ribosome-associated chaperone, trigger factor (Tig), LamB-LacZ localized to the periplasm in a SecA-dependent, SRP-independent fashion. Collectively, our results provide compelling in vivo evidence that there is an SRP-dependent cotranslational targeting mechanism in E. coli and argue against a role for trigger factor in pathway discrimination.


1998 ◽  
Vol 66 (7) ◽  
pp. 3059-3065 ◽  
Author(s):  
David E. Johnson ◽  
C. Virginia Lockatell ◽  
Robert G. Russell ◽  
J. Richard Hebel ◽  
Michael D. Island ◽  
...  

ABSTRACT Urinary tract infection, most frequently caused byEscherichia coli, is one of the most common bacterial infections in humans. A vast amount of literature regarding the mechanisms through which E. coli induces pyelonephritis has accumulated. Although cystitis accounts for 95% of visits to physicians for symptoms of urinary tract infections, few in vivo studies have investigated possible differences between E. coli recovered from patients with clinical symptoms of cystitis and that from patients with symptoms of pyelonephritis. Epidemiological studies indicate that cystitis-associated strains appear to differ from pyelonephritis-associated strains in elaboration of some putative virulence factors. With transurethrally challenged mice we studied possible differences using three each of the most virulent pyelonephritis and cystitis E. coli strains in our collection. The results indicate that cystitis strains colonize the bladder more rapidly than do pyelonephritis strains, while the rates of kidney colonization are similar. Cystitis strains colonize the bladder in higher numbers, induce more pronounced histologic changes in the bladder, and are more rapidly eliminated from the mouse urinary tract than pyelonephritis strains. These results provide evidence that cystitis strains differ from pyelonephritis strains in this model, that this model is useful for the study of the uropathogenicity of cystitis strains, and that it would be unwise to use pyelonephritis strains to study putative virulence factors important in the development of cystitis.


2005 ◽  
Vol 73 (11) ◽  
pp. 7597-7601 ◽  
Author(s):  
K. Wroblewska-Seniuk ◽  
R. Selvarangan ◽  
A. Hart ◽  
R. Pladzyk ◽  
P. Goluszko ◽  
...  

ABSTRACT Escherichia coli bearing adhesins of the Dr/Afa family frequently causes urogenital infections during pregnancy in humans and has been associated with mortality in pregnant rats. Two components of the adhesin, Dra/AfaE and Dra/AfaD, considered virulence factors, are responsible for bacterial binding and internalization. We hypothesize that gestational mortality caused by Dr/Afa+ E. coli is mediated by one of these two proteins, Dra/AfaE or Dra/AfaD. In this study, using afaE and/or afaD mutants, we investigated the role of the afaE and afaD genes in the mortality of pregnant rats from intrauterine infection. Sprague-Dawley rats, on the 17th day of pregnancy, were infected with the E. coli afaE + afaD and afaE afaD + mutants. The clinical E. coli strain (afaE + afaD +) and the afaE afaD double mutant were used as positive and negative controls, respectively. The mortality rate was evaluated 24 h after infection. The highest maternal mortality was observed in the group infected with the afaE + afaD + strain, followed by the group infected with the afaE + afaD strain. The mortality was dose dependent. The afaE afaD double mutant did not cause maternal mortality, even with the highest infection dose. The in vivo studies corresponded with the invasion assay, where the afaE + strains were the most invasive (afaE + afaD strain > afaE + afaD + strain), while the afaE mutant strains (afaE afaD + and afaE afaD strains) seemed to be noninvasive. This study shows for the first time that the afaE gene coding for the AfaE subunit of Dr/Afa adhesin is involved in the lethal outcome of gestational infection in rats. This lethal effect associated with AfaE correlates with the invasiveness of afaE + E. coli strains in vitro.


1999 ◽  
Vol 10 (7) ◽  
pp. 2163-2173 ◽  
Author(s):  
Hans-Georg Koch ◽  
Thomas Hengelage ◽  
Christoph Neumann-Haefelin ◽  
Juan MacFarlane ◽  
Hedda K. Hoffschulte ◽  
...  

The molecular requirements for the translocation of secretory proteins across, and the integration of membrane proteins into, the plasma membrane of Escherichia coli were compared. This was achieved in a novel cell-free system from E. coliwhich, by extensive subfractionation, was simultaneously rendered deficient in SecA/SecB and the signal recognition particle (SRP) components, Ffh (P48), 4.5S RNA, and FtsY. The integration of two membrane proteins into inside-out plasma membrane vesicles of E. coli required all three SRP components and could not be driven by SecA, SecB, and ΔμH+. In contrast, these were the only components required for the translocation of secretory proteins into membrane vesicles, a process in which the SRP components were completely inactive. Our results, while confirming previous in vivo studies, provide the first in vitro evidence for the dependence of the integration of polytopic inner membrane proteins on SRP in E. coli. Furthermore, they suggest that SRP and SecA/SecB have different substrate specificities resulting in two separate targeting mechanisms for membrane and secretory proteins in E. coli. Both targeting pathways intersect at the translocation pore because they are equally affected by a blocked translocation channel.


2007 ◽  
Vol 73 (22) ◽  
pp. 7246-7251 ◽  
Author(s):  
Effendi Leonard ◽  
Mattheos A. G. Koffas

ABSTRACT Engineered microbes are becoming increasingly important as recombinant production platforms. However, the nonfunctionality of membrane-bound cytochrome P450 enzymes precludes the use of industrially relevant prokaryotes such as Escherichia coli for high-level in vivo synthesis of many functional plant-derived compounds. We describe the design of a series of artificial isoflavone synthases that allowed the robust production of plant estrogen pharmaceuticals by E. coli. Through this methodology, a plant P450 construct was assembled to mimic the architecture of a self-sufficient bacterial P450 and contained tailor-made membrane recognition signals. The specific in vivo production catalyzed by one identified chimera was up to 20-fold higher than that achieved by the native enzyme expressed in a eukaryotic host and up to 10-fold higher than production by plants. This novel biological device is a strategy for the utilization of laboratory bacteria to robustly manufacture high-value plant P450 products.


1996 ◽  
Vol 134 (2) ◽  
pp. 269-278 ◽  
Author(s):  
D T Ng ◽  
J D Brown ◽  
P Walter

In the yeast Saccharomyces cerevisiae, only a subset of preproteins that are translocated across the ER membrane require the function of the signal recognition particle (SRP), suggesting that an alternative, SRP-independent pathway must exist (Hann, B.C., and P. Walter. 1991. Cell. 67:131-144). We have established that the two targeting pathways function in parallel. Mutant alleles of SEC62 and SEC63 were isolated that specifically impaired the translocation of SRP-independent preproteins in vivo and in vitro, whereas SRP-dependent preproteins were unaffected. Based on this analysis, preproteins fall into three distinct classes: SRP dependent, SRP independent, and those that can use both pathways. Pathway specificity is conferred by the hydrophobic core of signal sequences. Our studies show a previously unrecognized diversity in ER-directed signal sequences, that carry structural information that serves to identify the route taken.


2003 ◽  
Vol 163 (1) ◽  
pp. 35-44 ◽  
Author(s):  
Gottfried Eisner ◽  
Hans-Georg Koch ◽  
Konstanze Beck ◽  
Joseph Brunner ◽  
Matthias Müller

We have systematically analyzed the molecular environment of the signal sequence of a growing secretory protein from Escherichia coli using a stage- and site-specific cross-linking approach. Immediately after emerging from the ribosome, the signal sequence of pOmpA is accessible to Ffh, the protein component of the bacterial signal recognition particle, and to SecA, but it remains attached to the surface of the ribosome via protein L23. These contacts are lost upon further growth of the nascent chain, which brings the signal sequence into sole proximity to the chaperone Trigger factor (TF). In its absence, nascent pOmpA shows extended contacts with L23, and even long chains interact in these conditions proficiently with Ffh. Our results suggest that upon emergence from the ribosome, the signal sequence of an E. coli secretory protein gradually becomes sequestered by TF. Although TF thereby might control the accessibility of pOmpA's signal sequence to Ffh and SecA, it does not influence interaction of pOmpA with SecB.


2002 ◽  
Vol 184 (10) ◽  
pp. 2642-2653 ◽  
Author(s):  
Sei-Kyoung Park ◽  
Fenglei Jiang ◽  
Ross E. Dalbey ◽  
Gregory J. Phillips

ABSTRACT The Ffh protein of Escherichia coli is a 48-kDa polypeptide that is homologous to the SRP54 subunit of the eukaryotic signal recognition particle (SRP). Efforts to understand the function of Ffh in bacteria have depended largely on the use of E. coli strains that allow depletion of the wild-type gene product. As an alternative approach to studying Ffh, a temperature-sensitive ffh mutant was isolated. The ffh-10(Ts) mutation results in two amino acid changes in conserved regions of the Ffh protein, and characterization of the mutant revealed that the cells rapidly lose viability at the nonpermissive temperature of 42°C as well as show reduced growth at the permissive temperature of 30°C. While the ffh mutant is defective in insertion of inner membrane proteins, the export of proteins with cleavable signal sequences is not impaired. The mutant also shows elevated expression of heat shock proteins and accumulates insoluble proteins, especially at 42°C. It was further observed that the temperature sensitivity of the ffh mutant was suppressed by overproduction of 4.5S RNA, the RNA component of the bacterial SRP, by stabilizing the thermolabile protein. Collectively, these results are consistent with a model in which Ffh is required only for localization of proteins integral to the cytoplasmic membrane and suggest new genetic approaches to the study of how the structure of the SRP contributes to its function.


1963 ◽  
Vol 18 (11) ◽  
pp. 956-964 ◽  
Author(s):  
H. Pelzer

A quantitative method for the estimation of cell wall mucopeptides and their enzymatic degradation products by paper chromatography is described. The procedure can be used for measuring the activities of mucopeptidehydrolases as well as for in vivo studies of the metabolism of cell wall mucopeptides.A partial purification of E. coli mucopeptidehydrolases was achieved by column chromatography on DEAE-Sephadex.


2008 ◽  
Vol 190 (23) ◽  
pp. 7709-7718 ◽  
Author(s):  
James M. Peterson ◽  
Gregory J. Phillips

ABSTRACT To more clearly understand the function of conserved bases of 4.5S RNA, the product of the essential ffs gene of Escherichia coli, and to address conflicting results reported in other studies, we have developed a new genetic system to characterize ffs mutants. Multiple ffs alleles were generated by altering positions that correspond to the region of the RNA molecule that interacts directly with Ffh in assembly of the signal recognition particle. To facilitate characterization of the ffs mutations with minimal manipulation, recombineering was used to construct new F′ factors to easily move each allele into different genetic backgrounds for expression in single copy. In combination with plasmids that expressed ffs in multiple copy numbers, the F′ factors provided an accurate assessment of the ability of the different 4.5S RNA mutants to function in vivo. Consistent with structural analysis of the signal recognition particle (SRP), highly conserved bases in 4.5S RNA are important for binding Ffh. Despite the high degree of conservation, however, only a single base (C62) was indispensable for RNA function under all conditions tested. To quantify the interaction between 4.5S RNA and Ffh, an assay was developed to measure the ability of mutant 4.5S RNA molecules to copurify with Ffh. Defects in Ffh binding correlated with loss of SRP-dependent protein localization. Real-time quantitative PCR was also used to measure the levels of wild-type and mutant 4.5S RNA expressed in vivo. These results clarify inconsistencies from prior studies and yielded a convenient method to study the function of multiple alleles.


Sign in / Sign up

Export Citation Format

Share Document