scholarly journals S100C/A11 is a key mediator of Ca2+-induced growth inhibition of human epidermal keratinocytes

2003 ◽  
Vol 163 (4) ◽  
pp. 825-835 ◽  
Author(s):  
Masakiyo Sakaguchi ◽  
Masahiro Miyazaki ◽  
Mikiro Takaishi ◽  
Yoshihiko Sakaguchi ◽  
Eiichi Makino ◽  
...  

An increase in extracellular Ca2+ induces growth arrest and differentiation of human keratinocytes in culture. We examined possible involvement of S100C/A11 in this growth regulation. On exposure of the cells to high Ca2+, S100C/A11 was specifically phosphorylated at 10Thr and 94Ser. Phosphorylation facilitated the binding of S100C/A11 to nucleolin, resulting in nuclear translocation of S100C/A11. In nuclei, S100C/A11 liberated Sp1/3 from nucleolin. The resulting free Sp1/3 transcriptionally activated p21CIP1/WAF1, a representative negative regulator of cell growth. Introduction of anti-S100C/A11 antibody into the cells largely abolished the growth inhibition induced by Ca2+ and the induction of p21CIP1/WAF1. In the human epidermis, S100C/A11 was detected in nuclei of differentiating cells in the suprabasal layers, but not in nuclei of proliferating cells in the basal layer. These results indicate that S100C/A11 is a key mediator of the Ca2+-induced growth inhibition of human keratinocytes in culture, and that it may be possibly involved in the growth regulation in vivo as well.

1991 ◽  
Vol 98 (2) ◽  
pp. 225-232 ◽  
Author(s):  
L.J. Nicholson ◽  
F.M. Watt

We have examined the expression of fibronectin and the alpha 5 beta 1 fibronectin receptor during terminal differentiation of human epidermal keratinocytes, using involucrin as a terminal differentiation marker. The levels of mRNAs encoding fibronectin and the alpha 5 and beta 1 integrin subunits were measured in keratinocyte populations that had been enriched for involucrin-negative or -positive cells by unit gravity sedimentation or suspension-induced terminal differentiation. All three mRNAs decreased in abundance during terminal differentiation, and the corresponding proteins were localised by immunofluorescence to the basal layer in stratified colonies. We also examined expression in ndk, a strain of epidermal cells with a complete block in terminal differentiation, which, as a result, do not express involucrin. Messenger RNA levels for fibronectin and the alpha 5 and beta 1 subunits were higher in ndk, than in unfractionated keratinocytes and the corresponding proteins were expressed by all ndk, consistent with a basal keratinocyte phenotype. We conclude that expression of fibronectin and the alpha 5 beta 1 fibronectin receptor decreases during terminal differentiation and that such changes are likely to play a role in the selective migration of terminally differentiating cells from the basal epidermal layer.


1990 ◽  
Vol 97 (1) ◽  
pp. 51-58 ◽  
Author(s):  
P.K. Jensen ◽  
K. Elgjo ◽  
O.D. Laerum ◽  
L. Bolund

A pentapeptide that inhibits proliferation of mouse epidermal keratinocytes in vivo and in vitro has been purified from mouse skin extracts. In the present study the effect of a synthetic analog of the epidermal pentapeptide on proliferation and differentiation of cultured human epidermal keratinocytes was investigated. In young, rapidly growing primary cultures the pentapeptide caused a dramatic decrease in mitotic activity and also induced pronounced changes in the balance between kinetically defined subpopulations of proliferating cells. A dipeptide derived from the pentapeptide was found to be at least as potent. A serine derivative of a hemoregulatory peptide also seemed to be active. When tested in epidermal cultures regenerating after removal of the suprabasal cell layers, both the pentapeptide and the dipeptide were shown to cause a delay in the proliferative response. Both peptides were also able to stimulate early (increase in cell size) and late (cornified envelope formation) events in the differentiation pathway of the keratinocyte. The apparent stimulatory effect on differentiation was most clearly seen in regenerating cultures, whereas the effect on primary cultures varied with the experimental set-up. It is suggested that homologous epidermal peptide(s) may play a major role in the regulation of human epidermal homeostasis.


1990 ◽  
Vol 1 (11) ◽  
pp. 791-809 ◽  
Author(s):  
Y Choi ◽  
E Fuchs

In the epidermis of skin, a fine balance exists between proliferating progenitor cells and terminally differentiating cells. We examined the effects of TGF-beta s and retinoic acid (RA) on controlling this balance in normal and malignant human epidermal keratinocytes cultured under conditions where most morphological and biochemical features of epidermis in vivo are retained. Our results revealed marked and pleiotropic effects of both TGF-beta and RA on keratinocytes. In contrast to retinoids, TGF-beta s acted on mitotically active basal cells to retard cell proliferation. Although withdrawal from the cell cycle is a necessary prerequisite for commitment to terminal differentiation, TGF-beta s inhibited normal keratinization in suprabasal cells and promoted the type of differentiation commonly associated with wound-healing and epidermal hyperproliferation. The actions of TGF-beta s and RA on normal keratinization were synergistic, whereas those on abnormal differentiation associated with hyperproliferation were antagonistic. These observations underscore the notion that environmental changes can act separately on proliferating and differentiating cells within the population. Under the conditions used here, the action of TGF-beta s on human keratinocytes was dominant over RA, and TGF-beta s did not seem to be induced as a consequence of RA treatment. This finding is consistent with the fact that RA accelerated, rather than inhibited, proliferation in raft cultures. Collectively, our data suggest that the effects of both factors on epidermal growth and differentiation are multifaceted and the extent to which their action is coupled in keratinocytes may vary under different conditions and/or in different species.


2002 ◽  
Vol 11 (4) ◽  
pp. 385-395 ◽  
Author(s):  
Karen E. Hamoen ◽  
Jeffrey R. Morgan

Hepatocyte growth factor (HGF) is a fibroblast-derived protein that affects the growth, motility, and differentiation of epithelial cells including epidermal keratinocytes. To investigate the role of HGF in cutaneous biology and to explore the possibility of using it in a tissue engineering approach, we used retroviral-mediated gene transfer to introduce the gene encoding human HGF into diploid human keratinocytes. Modified cells synthesized and secreted significant levels of HGF in vitro and the proliferation of keratinocytes expressing HGF was enhanced compared with control unmodified cells. To investigate the effects of HGF in vivo, we grafted modified keratinocytes expressing HGF onto athymic mice using acellular dermis as a substrate. When compared with controls, HGF-expressing keratinocytes formed a hyperproliferative epidermis. The epidermis was thicker, had more cells per length of basement membrane, and had increased numbers of Ki-67-positive proliferating cells, many of which were suprabasal in location. Hyperproliferation subsided and the epidermis was equivalent to controls by 2 weeks, a time frame that coincides with healing of the graft. Transient hyperproliferation may be linked to the loss of factors present in the wound that activate HGF. These data suggest that genetically modified skin substitutes secreting HGF may have applications in wound closure and the promotion of wound healing.


Author(s):  
A. R. Crooker ◽  
M. C. Myers ◽  
T. L. Beard ◽  
E. S. Graham

Cell culture systems have become increasingly popular as a means of screening toxic agents and studying toxic mechanisms of drugs and other chemicals at the cellular and subcellular levels. These in vitro tests can be conducted rapidly in a broad range of relevant mammalian culture systems; a variety of biological and biochemical cytotoxicity endpoints can be examined. The following study utilized human keratinocytes to evaluate the relative cytotoxicities of nitrofurazone (NF) and silver sulfadiazine (SS), the active ingredients of FURACIN(R) Topical Cream and SILVADENE(R) Cream, respectively. These compounds are anti-infectives used in the treatment of burn patients. Cell ultrastructure and elemental composition were utilized as cytotoxicity endpoints.Normal Human Epidermal Keratinocytes (HK) were prepared from the EpiPackTM culture system (Clonetics Corporation, Boulder, CO). For scanning electron microscopy (SEM) and transmission electron microscopy (TEM), cells were seeded on sterile 35 mm Falcon plastic dishes; for elemental microanalysis, cells were plated on polished pyrolytic carbon discs (E. Fullam, Latham, NY) placed in the culture dishes.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2153
Author(s):  
Raffaella Marina Lecci ◽  
Isabella D’Antuono ◽  
Angela Cardinali ◽  
Antonella Garbetta ◽  
Vito Linsalata ◽  
...  

A wide variety of polyphenols are reported to have considerable antioxidant and skin photoprotective effects, although the mechanisms of action are not fully known. Environmentally friendly and inexpensive sources of natural bioactive compounds, such as olive mill wastewater (OMWW), the by-product of olive-oil processing, can be considered an economic source of bioactive polyphenols, with a range of biological activities, useful as chemotherapeutic or cosmeceutical agents. Green strategies, such as the process based on membrane technologies, allow to recover active polyphenols from this complex matrix. This study aims to evaluate the antioxidant, pro-oxidant, and photoprotective effects, including the underlying action mechanism(s), of the ultra-filtered (UF) OMWW fractions, in order to substantiate their use as natural cosmeceutical ingredient. Six chemically characterized UF-OMWW fractions, from Italian and Greek olive cultivar processing, were investigated for their antioxidant activities, measured by Trolox Equivalent Antioxidant Capacity (TEAC), LDL oxidation inhibition, and ROS-quenching ability in UVA-irradiated HEKa (Human Epidermal Keratinocytes adult) cultures. The photoprotective properties of UF-OMWW were assayed as a pro-oxidant-mediated pro-apoptotic effect on the UVA-damaged HEKa cells, which can be potentially involved in the carcinogenesis process. All the UF-OMWW fractions exerted an effective antioxidant activity in vitro and in cells when administered together with UV-radiation on HEKa. A pro-oxidative and pro-apoptotic effect on the UVA-damaged HEKa cells were observed, suggesting some protective actions of polyphenol fraction on keratinocyte cell cultures.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Hui Hua ◽  
Jiawei Cheng ◽  
Wenbo Bu ◽  
Juan Liu ◽  
Weiwei Ma ◽  
...  

Aim. To determine whether 5-aminolevulinic acid-based photodynamic therapy (ALA-PDT) is effective in combating ultraviolet A- (UVA-) induced oxidative photodamage of hairless mice skin in vivo and human epidermal keratinocytes in vitro. Methods. In in vitro experiments, the human keratinocyte cell line (HaCaT cells) was divided into two groups: the experimental group was treated with ALA-PDT and the control group was left untreated. Then, the experimental group and the control group of cells were exposed to 10 J/m2 of UVA radiation. ROS, O2− species, and MMP were determined by fluorescence microscopy; p53, OGG1, and XPC were determined by Western blot analysis; apoptosis was determined by flow cytometry; and 8-oxo-dG was determined by immunofluorescence. Moreover, HaCaT cells were also treated with ALA-PDT. Then, SOD1 and SOD2 were examined by Western blot analysis. In in vivo experiments, the dorsal skin of hairless mice was treated with ALA-PDT or saline-PDT, and then, they were exposed to 20 J/m2 UVA light. The compound 8-oxo-dG was detected by immunofluorescence. Conclusion. In human epidermal keratinocytes and hairless mice skin, UVA-induced oxidative damage can be prevented effectively with ALA-PDT pretreatment.


1999 ◽  
Vol 112 (12) ◽  
pp. 1843-1853 ◽  
Author(s):  
N. Maas-Szabowski ◽  
A. Shimotoyodome ◽  
N.E. Fusenig

Epithelial-mesenchymal interactions play an important role in regulating tissue homeostasis and repair. For skin, the regulatory mechanisms of epidermal-dermal interactions were studied in cocultures of normal human epidermal keratinocytes (NEK) and dermal fibroblasts (HDF) rendered postmitotic by alpha-irradiation (HDFi). The expression kinetics of different cytokines and their receptors with presumed signalling function in skin were determined at the RNA and protein level in mono- and cocultured NEK and HDFi. In cocultured HDFi, mRNA and protein synthesis of keratinocyte growth factor (KGF) (FGF-7) was strongly enhanced, whereas in cocultured keratinocytes interleukin (IL)-1alpha and -1beta mRNA expression increased compared to monocultures. Thus we postulated that IL-1, which had no effect on keratinocyte proliferation, induced in fibroblasts the expression of factors stimulating keratinocyte proliferation, such as KGF. The functional significance of this reciprocal modulation was substantiated by blocking experiments. Both IL-1alpha and -1beta-neutralizing antibodies and IL-1 receptor antagonist significantly reduced keratinocyte proliferation supposedly through abrogation of KGF production, because IL-1 antibodies blocked the induced KGF production. These data indicate a regulation of keratinocyte growth by a double paracrine mechanism through release of IL-1 which induces KGF in cocultured fibroblasts. Thus IL-1, in addition to its proinflammatory function in skin, may play an essential role in regulating tissue homeostasis.


Cells ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1089 ◽  
Author(s):  
Jean Christopher Chamcheu ◽  
Stephane Esnault ◽  
Vaqar M. Adhami ◽  
Andrea L. Noll ◽  
Sergette Banang-Mbeumi ◽  
...  

Psoriasis is a chronic immune-mediated skin disease that involves the interaction of immune and skin cells, and is characterized by cytokine-driven epidermal hyperplasia, deviant differentiation, inflammation, and angiogenesis. Because the available treatments for psoriasis have significant limitations, dietary products are potential natural sources of therapeutic molecules, which can repair the molecular defects associated with psoriasis and could possibly be developed for its management. Fisetin (3,7,3′,4′-tetrahydroxyflavone), a phytochemical naturally found in pigmented fruits and vegetables, has demonstrated proapoptotic and antioxidant effects in several malignancies. This study utilized biochemical, cellular, pharmacological, and tissue engineering tools to characterize the effects of fisetin on normal human epidermal keratinocytes (NHEKs), peripheral blood mononuclear cells (PBMC), and CD4+ T lymphocytes in 2D and 3D psoriasis-like disease models. Fisetin treatment of NHEKs dose- and time-dependently induced differentiation and inhibited interleukin-22-induced proliferation, as well as activation of the PI3K/Akt/mTOR pathway. Fisetin treatment of TNF-α stimulated NHEKs also significantly inhibited the activation of p38 and JNK, but had enhanced effect on ERK1/2 (MAPK). In addition, fisetin treatment significantly decreased the secretion of Th1/Th-17 pro-inflammatory cytokines, particularly IFN-γ and IL-17A by 12-O-tetradecanolylphorbol 13-acetate (TPA)-stimulated NHEKs and anti-CD3/CD28-activated human PBMCs. Furthermore, we established the in vivo relevance of fisetin functions, using a 3D full-thickness human skin model of psoriasis (FTRHSP) that closely mimics in vivo human psoriatic skin lesions. Herein, fisetin significantly ameliorated psoriasis-like disease features, and decreased the production of IL-17 by CD4+ T lymphocytes co-cultured with FTRHSP. Collectively, our data identify the prodifferentiative, antiproliferative, and anti-inflammatory effects of fisetin, via modulation of the PI3K-Akt-mTOR and p38/JNK pathways and the production of cytokines in 2D and 3D human skin models of psoriasis. These results suggest that fisetin has a great potential to be developed as an effective and inexpensive agent for the treatment of psoriasis and other related inflammatory skin disorders.


2004 ◽  
Vol 164 (7) ◽  
pp. 979-984 ◽  
Author(s):  
Masakiyo Sakaguchi ◽  
Masahiro Miyazaki ◽  
Hiroyuki Sonegawa ◽  
Mariko Kashiwagi ◽  
Motoi Ohba ◽  
...  

Growth regulation of epithelial cells is of major concern because most human cancers arise from them. We demonstrated previously a novel signal pathway involving S100C/A11 for high Ca2+-induced growth inhibition of normal human keratinocytes (Sakaguchi, M., M. Miyazaki, M. Takaishi, Y. Sakaguchi, E. Makino, N. Kataoka, H. Yamada, M. Namba, and N.H. Huh. 2003. J. Cell Biol. 163:825–835). This paper addresses a question whether transforming growth factor β (TGFβ) shares the pathway with high Ca2+. On exposure of the cells to TGFβ1, S100C/A11 was phosphorylated, bound to nucleolin, and transferred to the nucleus, resulting in induction of p21WAF1/CIP1 and p15INK4B through activation of Sp1. Protein kinase C α (PKCα) was shown to phosphorylate 10Thr of S100C/A11, which is a critical event for the signal transduction. The TGFβ1-induced growth inhibition was almost completely mitigated when PKCα activity was blocked or when S100C/A11 was functionally sequestered. These results indicate that, in addition to the well-characterized Smad-mediated pathway, the PKCα–S100C/A11-mediated pathway is involved in and essential for the growth inhibition of normal human keratinocytes cells by TGFβ1.


Sign in / Sign up

Export Citation Format

Share Document